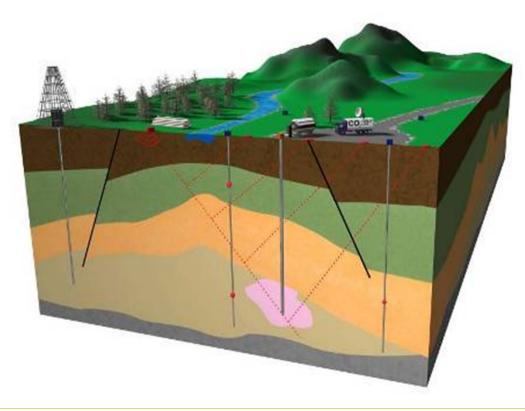


Ongoing research on shallow migration of CO₂ at CO₂ Field Lab in Svelsvik (Norway)


Presented by Marie-Laure Olivier SINTEF Petroleum Research, Trondheim, Norway

6th CO₂GeoNet Open Forum, *May* 9-11 2011 *Venice, San Servolo Island*

"It is of no use to monitor a reservoir without knowing the sensitivity of the monitoring equipment."

Background

- Regulatory framework
 - EU legislation
 - Monitoring, Reporting and Accounting protocols
- The issue of leakage must be well addressed
 - Safety: Minimize the Health, Safety & Environmental risk
 - Mitigation and early remediation
 - Public acceptance: credibility of geological storage challenged
 - Accounting: emission credits
- Validated monitoring system for leakage
- Technology assessment

Crucially needed!!!

Feasibility study

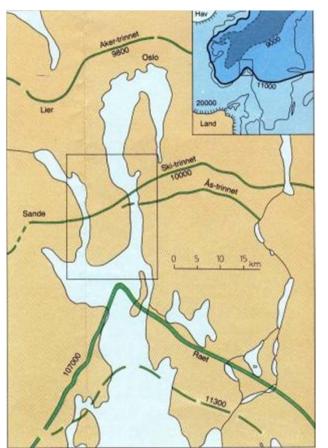
Feasibility study was conducted Aug '06 - Jan '07 by 9 Norwegian partners using 0.29 mill. € from Gassnova.

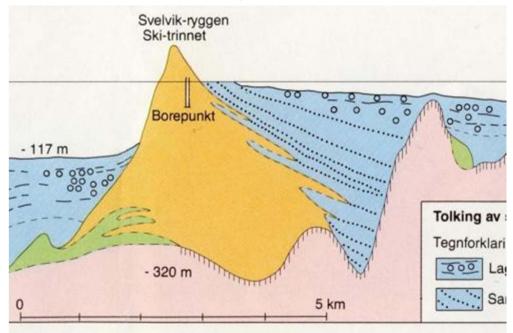
> Two field laboratory sites have been identified in Norway:

- Svelvik
- Brumunddal

For each site a monitoring and modelling program has been designed.

Location


Svelvikryggen; Midway Drammensfjord; 50 km SW of Oslo



Svelvik

Terminal glaciofluvio-glaciomarin deposit formed during the Ski stage of Holocene ice recession in Southern Norway

Formation type	Cementation	Dip	Vertical thickness	Permeability / Porosity
Quaternary sand	Uncemented/ Loose	10-15 °	~300 m	High

CO₂FieldLab in one slide

Small amounts of CO_2 injected in permeable rocks in a wellcontrolled and well-characterised geological environment. Shallow and very shallow subsurface in a Norwegian field

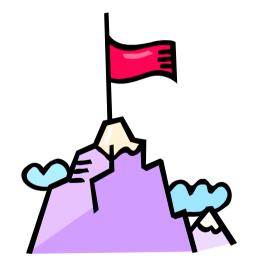
The underground CO_2 distribution will be monitored with an exhaustive set of techniques deployed by project partners.

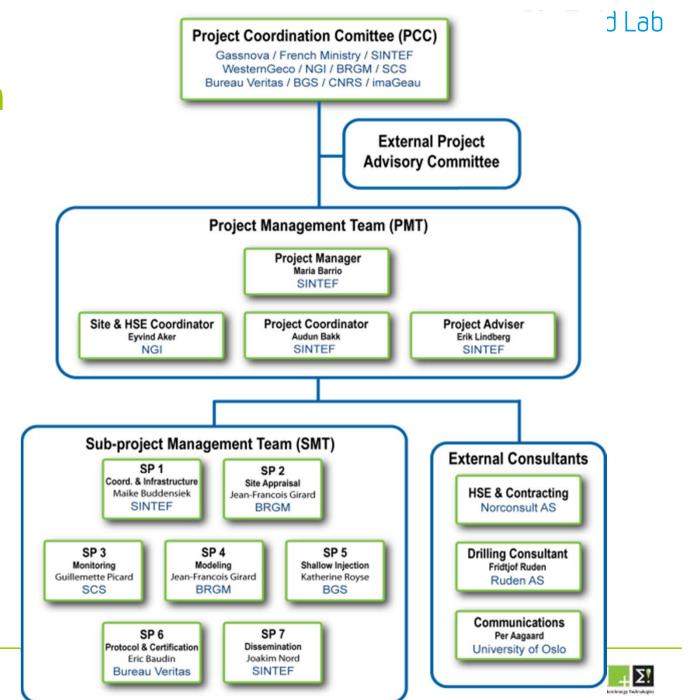
CO₂ Field Lab

Objectives CONTROLLED LEAKAGE EXPERIMENT

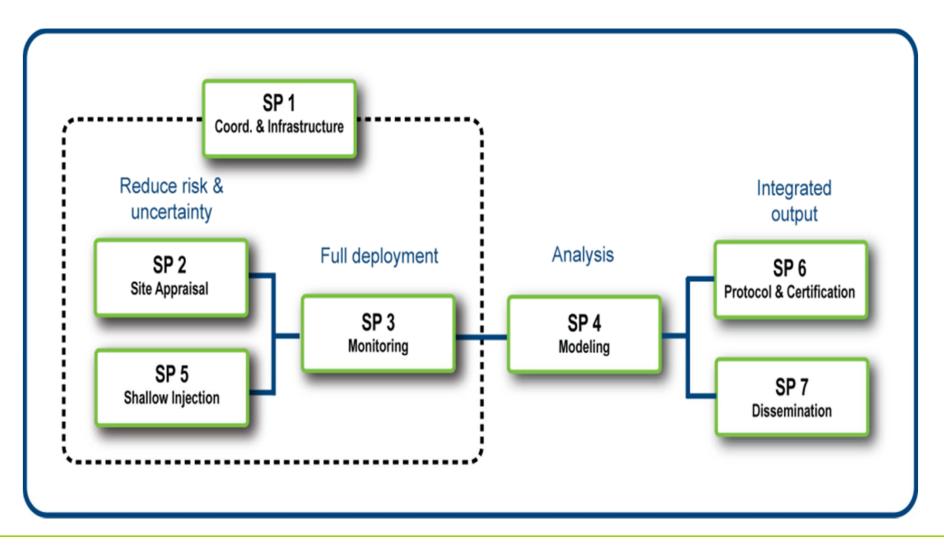
CO₂ injection in permeable reservoir

- **Shallow** (10-30 m)
- Deep (200 300 m, ca. 200 tons in 2-4 weeks)
- Determine sensitivity of monitoring systems to migration & surface leakage
- Upscale results to assess monitoring systems and requirements ensuring safe CO₂ storage


- > Test and calibrate **migration models** in well controlled conditions
- Inform the public about the safety of CO₂ storage by showing the performance of monitoring systems
- Develop monitoring protocol / certification scheme


What makes this project unique?

- Detection limits
- Combination of monitoring tools and technologies
- Existing and novel technologies
- Repeatability and permanent networks
- Better option than natural analogues
- > Other relevant projects:
 - CO2CRC Otway
 - Montana



Project organisation

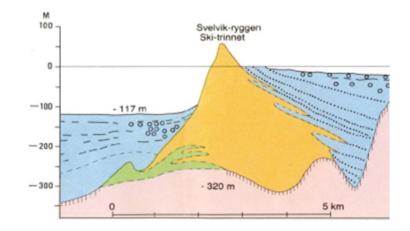
Project structure

$\ensuremath{\text{CO}_2}$ Field Lab

SP1: Coordination and Infrastructure (SINTEF)

- Fechnical Site Coordination
- Contracting
- Environment & Permits
- > Wells Drilling
- Cores
- > Abandonment

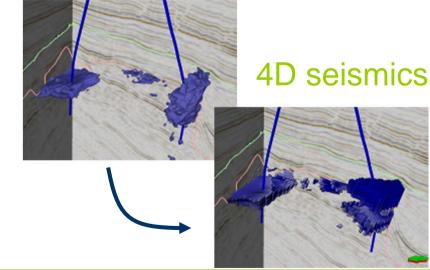
CO2 tank used in a CO2 injection project



SP2: Site appraisal (BRGM)

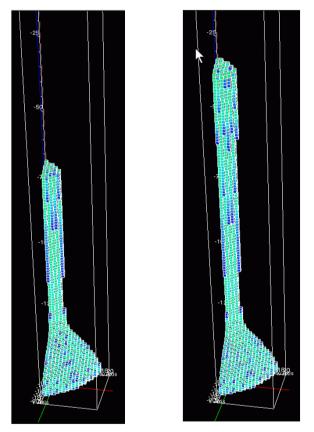
Site investigation to reduce uncertainties concerning

- Geology
- Suitability for CO₂ injection
- Suitability for monitoring
- Other risks
- Go / No-go decision
 - alternative site



SP3: Monitoring (SCS)

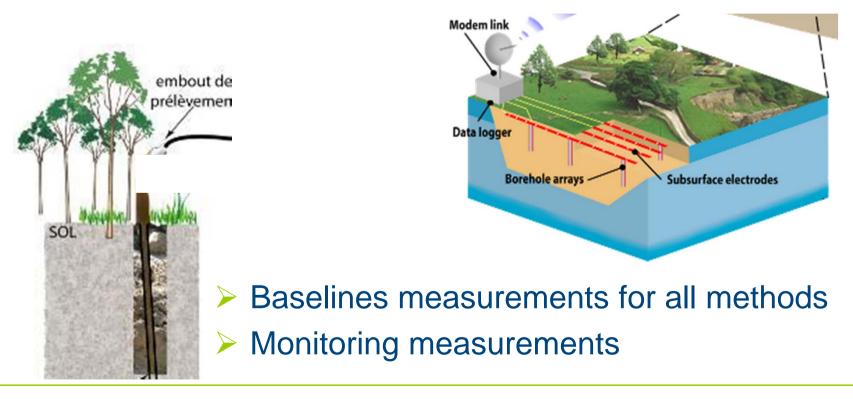
- Determine sensitivity & performance of the best available monitoring methods to detect CO₂
 - Surface
 - Sub-surface


- Baselines measurements for all methods
- Monitoring measurements

SP4: Integrated modelling (BRGM)

- CO₂ flow & chemistry modelling
- Upscale results to assess monitoring systems and requirements that will ensure safe CO₂ storage
- Test and calibrate migration models in well controlled conditions

Processed & analysed dataIntegrated site model


Reservoir fluid flow model

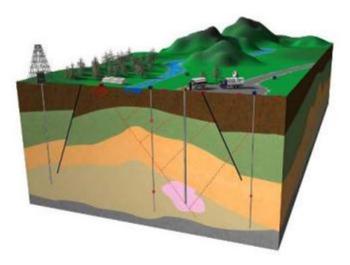
SP5: Shallow experiment (BGS)

- Decrease technology deployment risk
- Assured surface leakage
- Testing of tool sensitivity and deployment strategies prior to deeper injection experiment

SP6: Monitoring Protocol & Certification (Bureau Veritas)

> What?

- Monitoring protocol is a standardized method of
 - preparing equipment
 - performing measurements
 - interpreting the results
- Certification
 - document verifying that Monitoring Protocol has been applied correctly
- > Why?
 - quality assurance
 - detect & quantify CO₂ leakage or lack thereof



SP7: Dissemination (SINTEF)

> SP7 main objectives are to:

- Coordinate internal and external communication
- Set standards for future storage projects through communication guidelines

SP7: Dissemination (SINTEF)

Exposure in media

- Newspaper articles
- Popularised articles
- Norwegian national TV

Local community Public hearings

Information about coming/ongoing events

Press book

Press releases

Scientific publications

www.sintef.no/CO2FieldLab

Project outline

Phase 1: Appraisal phase / site characterization

Go / No-go decision depending on site feasibility (January 2011)

Phase 2: Injection and monitoring phase

a) Shallow injectionb) Deep injection

Phase 3: Project closure

CO₂ Field Lab

Milestones achieved – phase 1

- Legal groundwork
- Geoelectric / GPR surveys (Nov 09)
- Geological reconnaissance (Feb 10)
- Seismic survey (Mars 10)
- Drilling & logging operations (June 10)
- Hydrodynamic testing (Aug 10)
- > Risk & feasibility analysis (extensive modeling) (Nov 10)

CO₂ Field Lab

Site characterisation

Geophysical surface	Well	Soil / surface /
measurements	measurements	atmospheric m.
 2D geoelectric 2D GPR (Ground- Penetrating Radar) 2D seismics 	 Bore hole logging (300 m) Core sample analysis Injection test 	 Hydrodynamic testing (6 m) Chemical & biological baseline (water, soil, gas)

Scenario modeling

Drilling – June 10

Timeline – phase 2 + 3

Milestones – phase 2

- July 2011: shallow injection completed
- Spring 2012: deep injection initiated
- Spring 2013: coupled modelling reported, protocol
- September 2013: final report

Milestones - phase 3 (parallel to Phase 2)

- December 2011: 1st abandonment plan
- September 2013: Site abandoned; project closure

Monitoring of CO₂

$\ensuremath{\text{CO}_{\text{2}}}$ Field Lab

Geophysical surface measurements	Monitoring well measurements	Soil / surface / atmospheric m.					
 4D ERT (Electrical Resistance Tomography), SPT (Seismic Parallel Tester) EM, NMR Passive seismics Active seismics Time-lapse ERT 	 CO₂, isotopes, induction logging, pressure, temp. Permanent electrode array, logging Water sampling Analysis of bacteria activity 	 Soil gas Surface gas: Laser gas analyser, accumulation chambers, atmospheric tower Shallow wells: water sampling Analysis of bacteria activity 					
N	Modeling: History matching						

Status

CO₂ Field Lab

Project approved by

- EUROGIA+ board (June 2009)
- French Ministry (July 2009)
- Gassnova (CLIMIT Program) (September 2009)
- CSLF recognition (October 2010)
- Phase 1 concluded (Sep. '09 Jan.'11)
 - Site characterisation: Geological surveys successfully performed
 - June '10: Drilling and logging 300 m deep exploration well
 - Update models based on logged data
- Phase 2 (start May '11)
 - CO₂ injection and monitoring (2011-2013)
 - Funding secured for 2011. Industrial funding missing for 2012 ++
 - 2011: Very shallow injection and further shallow well appraisal

Project participation

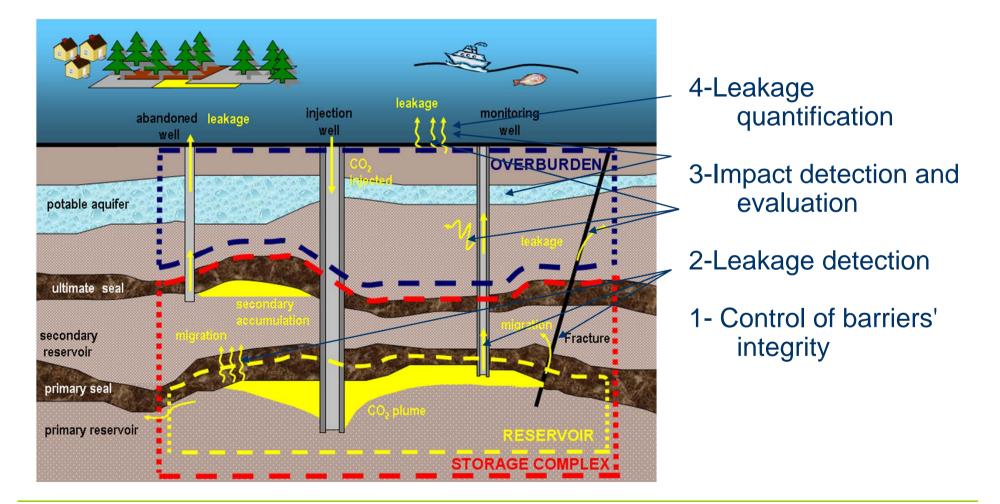
- Industrial project partner
 - Party in the Project Consortium Agreement
 - Possibility for technology contribution
 - Contribution in cash (and in-kind):1MEuro + 250 kEuro*
 - 1 vote in the Project Coordination Committee (PCC)
- Member of the Industrial Contact Group (ICG)
 - Arm-length group supporting the project
 - Allowed as observers in the Project Coordination Committee
 - Access to a defined quantity of project results
 - Contribution in cash (not in-kind): 400 kEuro*

* Contributions for the total 4 year project, 250 kEuro is late arrival fee

Contact information

Maria Barrio, Project manager, <u>maria.barrio@sintef.no</u>, +47 735 94 275

Website: <u>www.sintef.no/CO2FieldLab</u>

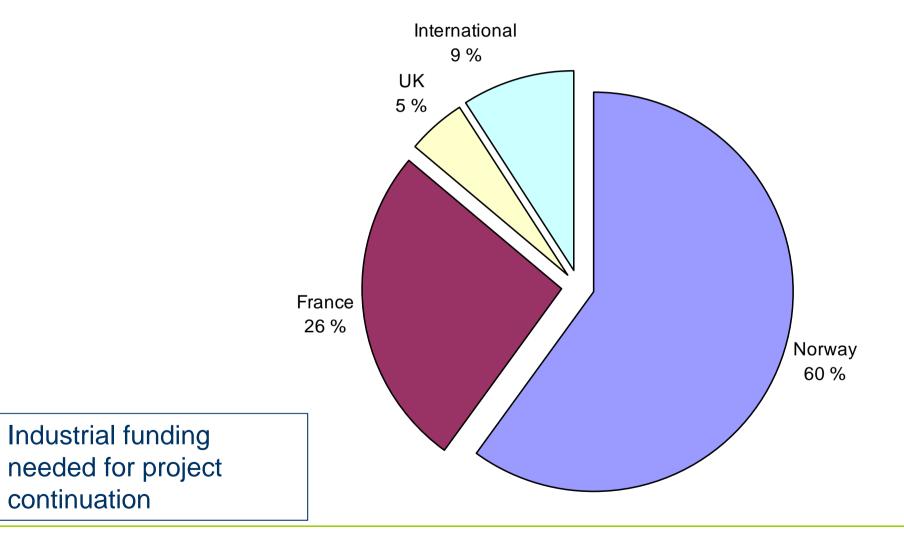


Assurance Monitoring

Four monitoring activities targeted at controlling containment

CO₂ Field Lab

$\ensuremath{\text{CO}_{\text{z}}}$ Field Lab


Monitoring of CO₂ impact

Geophysical surface measurement	Well measurements	Soil / surface / atmospheric m.
	 MW1: WestBay Water sampling Analysis of bacteria activity 	 Water sampling Analysis of bacteria activity

Funding

