

innovation for life

Monitoring CO₂ injection at K12-B Current Status

By

Vincent Vandeweijer, Bert van der Meer, Cor Hofstee – TNO Frans Mulders, Hilbrand Graven, Daan D'Hoore – GDF SUEZ

Outline

Tuesday May 10th 2011 - Venice Vincent Vandeweijer - Monitoring K12-B

Location Layout Geological setting Gas production CO₂ injection

Monitoring Techniques and Results

Well integrity:

Multi-finger imaging tools CBL and Down-hole video log Electromagnetic imaging tool and Scale CO_2 Migration: Chemical Tracers and Gas analysis Down hole water sample CO_2 injection well Dynamic flow modeling

Conclusions & Future plans

Intro

TNO innovation for life

Location

Gas field in the Dutch sector of the North Sea

150 km NW of Amsterdam

1:40000

TO DE

Gas Production

CO₂ Injection

Projects at K12-B: ORC, MONK, CO₂ReMoVe, CATO2, CO₂Care

- CO₂ injection started 2004 in K12-B8
- >10 kTon injected in compartment 4
- CO₂ injection since 2005 in K12-B6
 - Producers K12-B1 and K12-B5

Approx. 70 kTon injected in compartment 3

TNO innovation for life

Monitoring Techniques and Results

Well integrity

Multi-finger imaging tools CBL and down-hole video log Electromagnetic imaging tool and scale

CO₂ Migration

Chemical tracers and gas analyses Down hole water sample CO₂ injection well Dynamic flow modeling

Multi-finger Imaging Tools

First multi-finger caliper in 2005, 3 time-lapse runs completed

TNO innovation for life

CBL and Down-hole Video Log

for life

ElectroMagnetic Imaging Tool and Scale

Chemical Tracers and Gas Analyses

Injection of two types of tracers took place March 2005

innovation for life

Tracer data from wells K12-B1 & K12-B5 was used to determine breakthrough

In combination with gas analyses used to investigate the migration of CO_2

Provide information to evaluate the effects of certain mechanisms on EGR

NO innovation for life

Down hole water sample CO₂ injection well

First measurements of down-hole water conditions in a CO₂ injection well

Data can be used in chemical and dynamic flow modelling and well integrity studies

Measurements were an alternative for the down hole pH measurements

CATIONS		mq/l	meg/l	PROPERTIES	
Sodium	Na	93150	4052	pH @ 20°C	6.10
Potassium	К	918	23	Specific Gravity @ 15.6°C	1.186
Calcium	Ca	13300	664	Resistivity@15.6°C (Ohm.m)	0.044
Magnesium	Mg	2156	177	Dissolved solids (g/l)	281.4
Barium	Ba	6.1	0.09	H ₂ S Content	not detected
Strontium	Sr	184	4.2		
Iron (tot.)	Fe	274	9.8	ADDITIONAL ELEMENTS	mg/l
Iron (diss.)	Fe	245	8.8	Lithium Li	40
				Silicon Si	20
ANIONS		<u>mg/l</u>	meg/l	Phosphorus P	< 7
Chloride	a	172884	4876	Boron B	76
Sulphate	SO4	358	7.5	Aluminium Al	< 6
Bicarbonate	HCO3	233	3.8		
Carbonate	CO3	nil	nil		
Hydroxide	ОН	nil	nil		

Dynamic Flow Modeling

History matched reservoir models of various compartments and combinations

Complemented with down-hole pressure and temperature data

Dynamic Flow Modeling - Eclipse 300

History matched for pressure, flow and CO₂ concentration in wells K12-B1, B3, B5 and B6

Near well grid refinement

Decreased kh in well K12-B6 (possibly caused by intruding water)

Conclusions

CO₂ injection at K12-B has not brought any unforeseeable problems

State of the well and tubing are OK

Chemical tracers supplied valuable data

EGR through pressure support

EGR through the partitioning behavior of the CO₂, too little data

Future work / plans

Questions....

