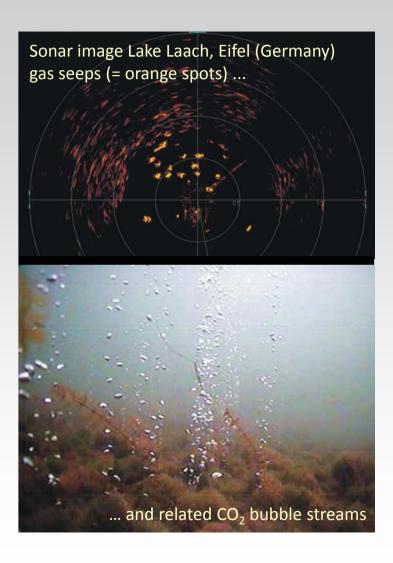


Acknowledgement

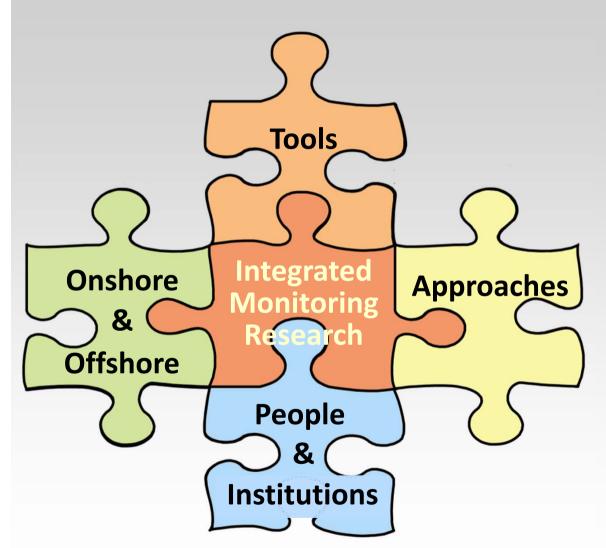

Many thanks to

Kai Spickenbom Christian Seeger

Ingolf Dumke
Eckhard Faber
Markus Furche
Martin Krüger
Dietmar Laszinski
Franz May
Jürgen Poggenburg
Heike Rütters
Stefan Schlömer
Christian Wöhrl

Volker Böder Arne Sauer Harro Lütjens Giorgio Caramanna

Benedictine Abbey of Maria Laach Ansgar Hehenkamp Michael Uhlenbruch SGD Nord, Koblenz



Introduction: Terms & Outline

Monitoring

- Near surface monitoring in the CCS context
- Leakage detection
- Longterm leakage surveillance

Integration

 ... putting objects, tools and methods
 of the working environment
 in the right place and
 connect them meaningful ...

Introduction: Lake Laach

Introduction: Lake Laach

- The lake fills a volcanic caldera formed by an eruption about 12,900 yrs ago
- Surface level at 275.3 m asl, area of about 3.31 km², max. depth presently at 52.34 m
- No natural run-off, but tunnel constructions in the 12th and 19th century
 - → lowered the lake level by 10+5m
- CO₂-degassing related to upper mantle anomalies (intrusion to lower crustal levels)
- Accompanying He and C isotopes point to a mantle signature
- Estimated CO₂-flux into the lake is at about 5000 t CO₂ per yr (Aeschbach-Hertig et al. 1996)

Integrating People & Institutions

Field work, *i.a.* within CO₂GeoNet

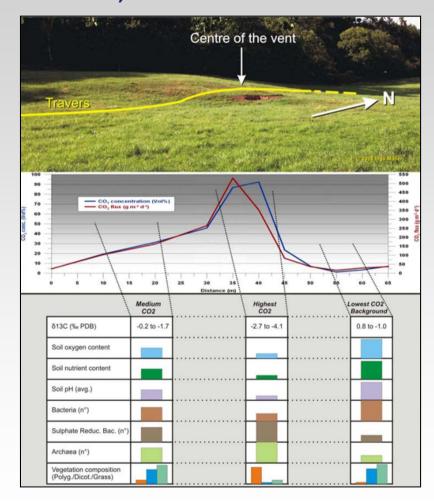
- BGR
- BGS
- BRGM
- OGS
- URS
- Centre for Innovation in CCS, Nottingham
- Inst. for Biogeochemistry & marine Chem., Univ. Hamburg
- Inst. of Geology, Univ. Mainz
- Atlas Electronics, Bremen
- Northern Inst. of Advanced Hydrographics, Hamburg
- LUWG, Mainz etc.

Integrating People & Institutions

Networking, e.g.

Workshop on Natural Releases of CO₂: Building Knowledge for CO₂ Storage Environmental Impact Assessments; Nov. 2010

- organised by IEAGHG
 in co-operation with CO₂GeoNet
 and BGR
- sponsorship: IEAGHG & IPAC-CO₂
 Research
- ~ 50 participants from all over the world

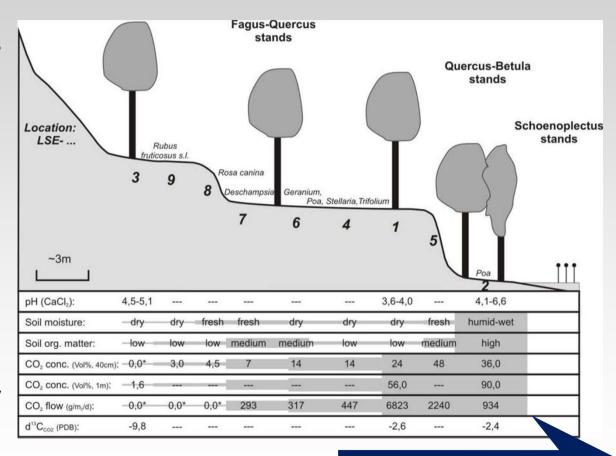


Field activities: Onshore

e.g. Joint Geoecological Research of Natural CO₂ Sources in the East Eifel, Germany within CO₂GeoNet's activities on monitoring near surface leakage and its impacts 2007-2009

- BGR, BGS, BRGM, URS
- Near surface gas surveys
- Impact studies:
 - Botany
 - Invertebrates
 - Microbiology
- Survey of water physics and chemistry
- Initial underwater gas survey
- later also OGS, airborne remote sensing

Lake Laach, Western Shore:

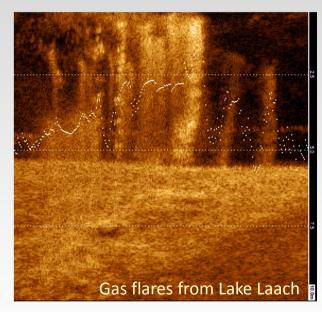


Field activities: Onshore

e.g. Joint Geoecological Research of Natural CO₂ Sources in the East Eifel, Germany within CO₂GeoNet's activities on monitoring near surface leakage and its impacts 2007-2009

- BGR, BGS, BRGM, URS
- Near surface gas surveys
- Impact studies:
 - Botany
 - Invertebrates
 - Microbiology
- Survey of water physics and chemistry
- Initial underwater gas survey
- later also OGS, airborne remote sensing

Lake Laach, Eastern Shore:


Field activities: Offshore

A Multi-Level Concept as Systematic Underwater (Gas) Monitoring Approach

1. Level: Detection

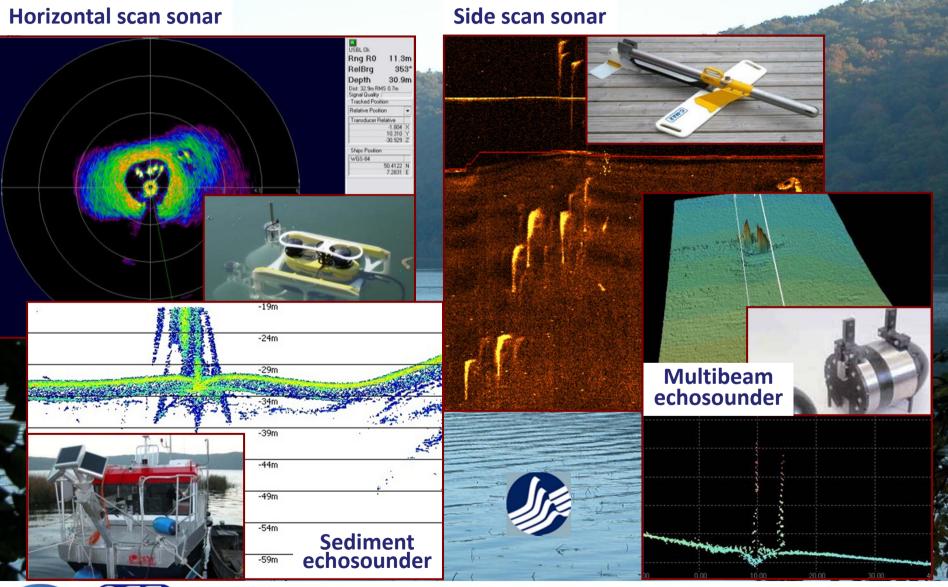
2.+3. Level (in case of anomalies): Verification and Characterization

4. Level (in case of leakage): Long-term Monitoring

Periodic surveys by means of ship-mounted hydro-acoustic methods covering large areas

Inspection of anomalies using ROV-based techniques; i.a. video capturing, gas sampling & gas flux quantification

Installation of stationary monitoring devices for the long-term survey of identified seepages



Field activities: Offshore leakage detection

Field activities: Offshore leakage detection

Systems Evaluation, preliminary

Sonar system	Multibeam	Sidescan	Sediment
	echosounder	sonar, towed	echosounder
Position accuracy	+	-	+
	[cm range]	[~5 m ±2.5]	[cm range]
Spatial coverage	+	+	-
	[readily acquirable]	[readily acquirable]	[small beam width of 1.8°]
Detection certainty	- [notably false positives]	+/- [limits for small releases]	+ [exact identification]
Time requirements	+/- [fast to time-consuming]	+ [more or less fast]	- [complex processing]
Σ:	reliable for	rapid surveying with	very good detection
	strong gas plumes	uncertainties	along traverses

Field activities: Regional interpretation

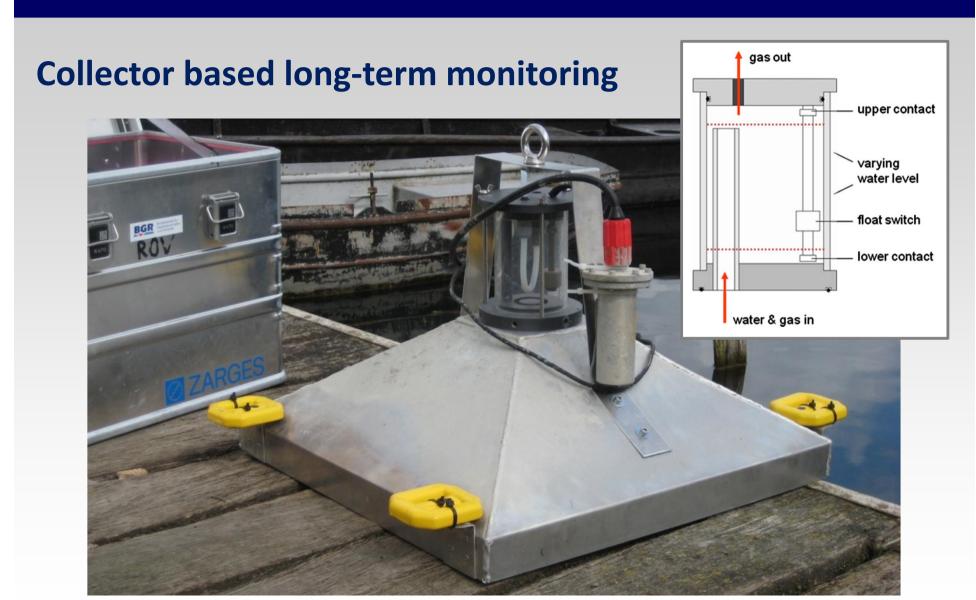
Field activities: Verification & Characterisation

ROV-based surveying

Development focused on:

- High Mobility
- Fast Interventions
- Systems Integration
- Robustness
- Least costs

- Sonar navigation & logging
- USBL positioning & logging
- Video documentation
- Gas flow recording
- Gas sampling
- Water sampling
- Sensors for dissolved gases (CO₂ and CH₄) mountable
- Temperature and pressure recording



Field activities: Long-term monitoring

Conclusion

A realistic underwater gas monitoring of CO₂ storage complexes requires a multi-level concept

Baseline monitoring

Site selection

Site screening

Detection

Verification & Characterisation

Long-term Monitoring

&

Deep monitoring

Integrated monitoring system as primary design requirement of (offshore) CCS operations

