CO₂ SEQUESTRATION IN UNCONVENTIONAL RESERVOIRS: Challenges and Opportunities

Turgay Ertekin Penn State University

CO₂ CAPTURE AND STORAGE REGIONAL AWARENESS-RAISING WORKSHOP

13-14 June 2012 ■ METU ■ ANKARA, TURKEY

Carbon Dioxide Sequestration:

Definition:

Capture, Separation and Secure Storage of carbon dioxide that would otherwise be emitted to or remain in the atmosphere.

Natural CO₂ sink—primary types of geologic reservoirs for storing anthropogenic CO₂

Terrestrial ecosystems
 plants and soils with retention of days to decades

Ocean

- Oceans slow process
- Geological horizons retention on a geological time scale
- Chemical processes storage in stable carbonate mineral forms

Geological Horizons

Coal Seams Depleted Oil and Gas Reservoirs Deep Saline Formations Methane Hydrates Terrestrial

Chemical

Overview

 Technology advances in drilling and completion over the past several decades including directional/horizontal drilling and hydraulic fracturing have allowed economic development of resources from unconventional reservoirs

- Industrial carbon storage in unconventional reservoirs is considered to have two attractive features:
 - presence of an established network of fractures
 - potential to use injected CO₂ to enhance production of remaining hydrocarbons

Overview

- Laboratory experiments to determine CO₂ flow dynamics and its retention in cracks and pores by mechanisms of displacement (filling) and sorption
- Laboratory experiments to understand the thermodynamics of CO₂ – brine and CO₂ – hydrocarbon systems
- Numerical modeling studies to arrive at potential injection rates and final CO₂ sequestration capacity of the formation in the presence of advanced well structures
- Economic assessment of the implementation of the project

A typical workflow of modeling of CO_2 injection into depleted shale gas reservoirs.

Near-term focus on a variety of geologic storage options

- Safe and permanent containment of CO₂
- Low environmental impact
- Low cost
- Conformity with national and international laws and regulations
- Public acceptability

Phase diagram for CO₂

Factors to confirm the suitability of the geology

- The impermeability of the cap rock
- Storage capacity of the rock formation
- Chemical reactions that occur between CO₂ and reservoir rock and fluids
- If the geological unit can chemically react with CO₂, then, it is a plus
- A lack of faults in the area of injection operation that would avoid migration of fluids

Protocols needed

• **MEASURING:** measure the amount of CO₂ stored

MONITORING: maintain the storage integrity over time

 VERIFICATION: ensure the stored CO₂ does not pose any threat to public health or environment

Models — the key to different disciplines

GEOLOGIC RISKS – IS THERE CO₂ (AND/OR HYDROCARBON) STORAGE RESERVOIR THERE?

One needs to assign probabilities to each of the following parameters:

Existence of trap Source rock Thermal maturation Migration and geologic age Reservoir (storage capacity) Seals Injectivity (Productivity) UNMINEABLE COAL SEAMSDEPLETED SHALE GAS RESERVOIRSDEEP SALINE FORMATIONSMETHANE HYDRATE RESERVOIRS

The combined probability of finding a productive reservoir is the product of the several of these individual numbers.

Overview

Field development planning considers:

- the well numbers, locations, type, and drilling schedule
- a production/injection forecast must be included
- development philosophy/strategy details the part of the reservoir to develop first and how to attack it
- simulation is used to model the reservoir and the flow dynamics of the reservoir
- Management activity planning sets well design and production/injection methods to optimize the process

CO₂ injection into coal seams

CO₂ injection into unmineable coal seams

- Coal beds below economic mining depth could be used to store CO₂
- CO₂ storage in coal is limited to a relatively narrow depth range, between 600 m and 1000 m. Coal beds greater than 1000 m have decreased permeability for economically viable injection

Introduction

Why Coal Seams???

- Coal-seams have large internal surface areas and typically contain large amounts of methane-rich gas that is adsorbed onto the surface of the coal.
- Enhanced recovery of the methane gas can be achieved by CO₂ injection and studies show that CO₂ is more adsorbing on coal than methane thereby giving it the potential to efficiently displace methane and remain adsorbed on the coal surface.
- Coal seams have the potential to play a dual role: a source of methane and a repository for the sequestration of CO₂.

[Remner et al, 1984]

Introduction

- Coal seam properties to be considered :
 - Coal seam Porosity
 - Absolute Permeability
 - Cleat/Fracture Spacing
 - Sorption Parameters
 - Pressure & Saturation conditions
- Operational design parameters to be considered:
 - Type of Injectors/Producers
 - Lengths of Injectors/Producers
 - Orientation of Injectors/Producers
 - Injection/Producing Well Pressures
- In particular, it will be necessary to consider the effects of these properties on:
 - Amount of CO₂ injected into the coal-seam
 - CO₂ breakthrough time
 - Amount of CH₄ produced from the coal seam

Coal Seams – a multimechanistic* formulation

- Coal-seams have large internal surface areas and typically contain large amounts of methane-rich gas that is adsorbed onto the surface of the coal
- Coalbed methane (CBM) accounts for about 12% of total US natural gas production

Objective: To Study The Effects of Coal Seam Properties

- Data representing a typical coalseam was selected to define a hypothetical default system.
- A square development pattern with one vertical injector in the center of four horizontal producers was chosen.
- Primary production is to take place for 365 days and then enhanced recovery by continuous CO₂ injection (2MMSCF/D) will take place until breakthrough of CO₂.
- CO₂ breakthrough is defined as the time at which the mole fraction of CO₂ in the production stream is equal to 5%.

Reservoir Drainage Area	5000ft. x 5000ft. (574 acres)
Reservoir Thickness	10ft
Coal-seam Porosity	2%
Lateral Permeability (absolute)	10md
Initial Pressure	800 psia
Initial Water Saturation	45%

*not to scale

CO₂ Sequestration Pilot Project

Schematic of pilot project

Grid system used in simulations (1/4 of system)

CO₂ Sequestration Pilot Project: Results – Base Case

Focus on three CO₂ Sequestration performance indicators:

- CO₂ In Place at breakthrough
- Breakthrough time
- Cumulative CH₄ produced at breakthrough

Carbon Dioxide Retained

Production pressure = 14.7psi Injection Pressure = 300psi <u>Primary Production =</u> 195 days

Injection start time makes little difference in methane production

Production pressure = 14.7psi Injection Pressure = 300psi

Primary production time has a slightly larger effect on CO₂ retention

Production pressure = 14.7psi

Injection Pressure = 300psi

Increasing production-well pressure does not influence methane production

Injection Pressure = 300psi

Increasing production-well pressure slightly increases CO₂ retained

Injection Pressure = 300psi

Increasing injection-well pressure noticeably decreases methane production

Production pressure = 14.7psi

Increasing injection-well pressure increases CO₂ retention

Production pressure = 14.7psi

For reservoir parameters assumed, 600-700ft injector length may be best

Increases methane production by ~50%

Maximizes CO₂ sequestered

Has little effect on time to start of sequestration

However, increases project time from 750 to 1500 days

Injection well pressure is more important than production well pressure

 Increasing production well pressure (15 to 50 psi) increases methane production and CO₂ sequestration by about 3% each.

 Increasing injection well pressure (300 to 400 psi) decreases methane production by 17%, increases CO₂ sequestration by 10%.

Better data will improve the accuracy and reliability of our simulations

- Seam thickness
- Porosity
- Cleat permeabilities (face and butt)
- Cleat orientation
- Gas in place composition
- Sorption isotherms
- Sorption kinetics
- Spatial dependence of the above for each coal seam

CO₂ injection into depleted shale gas reservoirs

Depleted shale gas reservoirs

- There is high certainty in the integrity of this class of reservoirs with respect to CO₂ storage, as they have held gas for millions of years.
- A major drawback of depleted gas reservoirs is that they are penetrated by many wells of variable quality and integrity, which themselves may constitute leakage paths for the stored CO₂.

Horizontal Wellbore vs. Vertical Wellbore

- Performance of horizontal wellbore technology in shale gas is studied
- Reservoir, rock and well parameters are kept the same
- Reservoirs are <u>not</u> stimulated

11x11 Simulation Input for Shale Gas Reservoir with a Vertical Well		
Depth	6000 ft	
Thickness	200 ft	
Area	445 acres	
Fracture Porosity	1%	
Matrix Porosity	10%	
Fracture Permeability	0.001 md	
Matrix Permeability	0.0001 md	
Res. Temperature	200°F	
Average Pressure	5000 psia	
S_w in Fracture	0%	
S _w in Matrix	0%	
Langmuir Volume (CH4)	150 scf/ton	
Langmuir Pressure (CH4)	1281 psia	
Fracture Spacing	1 ft	
P _{sf}	14.9 psia	
Wellbore Radius	0.25 ft	
Vertical Well Completion	200 ft	

11x11 Simulation Input for Shale Gas Reservoir with a Horizontal Well		
Depth	6000 ft	
Thickness	200 ft	
Area	445 acres	
Fracture Porosity	1%	
Matrix Porosity	10%	
Fracture Permeability	0.001 md	
Matrix Permeability	0.0001 md	
Res. Temperature	200°F	
Initial Pressure	5000 psia	
S_w in Fracture	0%	
S _w in Matrix	0%	
Langmuir Volume (CH4)	150 scf/ton	
Langmuir Pressure (CH4)	1281 psia	
Fracture Spacing	1 ft	
P _{sf}	14.9 psia	
Wellbore Radius	0.25 ft	
Horizontal Well Length	2000 ft	

Horizontal Wellbore vs. Vertical Wellbore

- Daily Gas Productions and Cumulative Gas Productions are compared
- The total production from horizontal well at the end of 20th year is 7 times larger than the total production from vertical well

Horizontal Wellbore vs. Vertical Wellbore

3D Pressure Distributions

Vertical Well

Horizontal Well (Unstimulated)

Horizontal Wellbore vs. Vertical Wellbore 3D Pressure Distributions

Horizontal Well (Unstimulated)

Vertical Well

Stimulated Reservoir Volume Representations

Stimulated Reservoir Volume in Ellipsoidal Shape

Hydraulic Fractures Designed Using Discrete Representation

Hydraulic Fractures Designed as Stimulated Reservoir Volume (SRV) around the HW by changing the properties of the blocks that are considered as SRV.

- Both stimulated and unstimulated reservoirs have the same reservoir rock, fluid and well properties.
- Stimulated zone around the horizontal well is represented using a perfect cylinder.

11x11 Simulation Input for Shale Gas		Stimulated Zone Characteris	tics
with Horizontal V	Vell	Fracture Porosity 2	%
Depth	6000 ft	Fracture Permeability 0.01	l md
Thickness	200 ft	Fracture Spacing 0.	1 ft
Area	445 acres	Fracture Wing 60	0 ft
Fracture Porosity	1%		
Matrix Porosity	10%		
Fracture Permeability	0.001 md		
Matrix Permeability	0.0001 md		
Res. Temperature	200°F		
Initial Pressure	5000 psia		
S_w in Fracture	0%		
S _w in Matrix	0%		
Langmuir Volume (CH4)	150 scf/ton		
Langmuir Pressure (CH4)	1281 psia		
Fracture Spacing	1 ft		
P _{sf}	14.9 psia		
Wellbore Radius	0.25 ft		

- The total production of stimulated reservoir at the end of 20th year is 3.5 times larger than the production from unstimulated reservoir with HW
- It is also 24.3 times larger than the performance of the vertical well

3D Pressure Distributions

Unstimulated

Stimulated

3D Pressure Distributions

20th Year

Unstimulated

Stimulated

Various Operational Scenarios on Stimulated Reservoirs

Several operational scenarios are designed to understand the depletion characteristics of these reservoirs for future CO_2 injection planning purposes:

- Horizontal wellbore length is increased form 2000' to 2800'
- Fracture wing size is increased form 600' to 1000'

Spider Chart for Recoveries

Reservoir Properties – Shale Gas Reservoir Depletion followed by CO₂ Injection

7x7 Simulation Input for Shale Gas Reservoir with a Horizontal Wells		
Depth	6508.5 ft	
Thickness	129 ft	
Area	323 acres	
Fracture Porosity	1%	
Matrix Porosity	10%	
Fracture Permeability	0.002 md	
Matrix Permeability	0.001 md	
Fracture Spacing	1.7 ft	
Res. Temperature	142°F	
Average Pressure	3890psia	
S_w in Fracture	10%	
S_w in Matrix	010%	
Langmuir Volume (CH4)	73scf/ton	
Langmuir Pressure (CH4)	726 psia	
Langmuir Volume (C02)	75scf/ton	
Langmuir Pressure (C02)	400psia	
Ρ.,	14 9 psia	

SRV Properties		
HW Length (center well)	2250 ft	
HW Length (edge wells)	2250 ft	
Fracture Wing	625ft	
Fracture Porosity	2%	
Fracture Permeability	0.02 md	
Fracture Spacing	0.17 ft	

All of the wells are producers for 30 years, then edge wells are switched to CO_2 injectors. Center well continues production

All of the wells are producers for 30 years

Pressure Distribution (Day:7341)

Injection starts at 30th year. Center well continues production

Pressure Distribution (Day:13520)

All of the wells are producers for 30 years, then edge wells are switched to CO₂ injectors. Center well continues production

CO₂ Concentration Distribution (Day: 11,100)

CO₂ Concentration Distribution (Day: 11,200)

All of the wells are producers for 30 years, then edge wells are switched to CO₂ injectors. Center well continues production

CO₂ Concentration Distribution (Day: 11,370)

CO₂ Concentration Distribution (Day: 12,708)

CO₂ Concentration Distribution (Day: 13,878)

CASE 2 k=0.0001md

All of the wells are producers for 30 years, then edge wells are switched to CO_2 injectors. Center well continues production

All of the wells are producers for 30 years, then edge wells are switched to CO₂ injectors. Center well continues production

Injection starts at the 30th year. Center well continues production

All of the wells are producers for 30 years, then edge wells are switched to CO₂ injectors. Center well continues production

All of the wells are producers for 30 years, then edge wells are switched to CO₂ injectors. Center well continues production

CO₂ Concentration Distribution (Day: 12,708)

All of the wells are producers for 30 years, then edge wells are switched to CO_2 injectors. Center well continues production.

Injection starts at the 30th year. Center well continues production

All of the wells are producers for 30 years, then edge wells are switched to CO₂ injectors. Center well continues production

CO₂ Concentration Distribution (Day: 11,100)

All of the wells are producers for 30 years, then edge wells are switched to CO₂ injectors. Center well continues production

<figure>

- A permeable system is tested to observe the CO₂ breakthrough at the producer
- First CO₂ production from the center well is seen after 3 years

All of the wells are producers initially, then the edge wells are switched to CO₂ injectors at the 5th year. The center well continues production

Injection starts at the 5th year. The center well continues production

CO₂ mole fraction in the adsorbed phase

CO₂ mole fractions in the adsorbed phase

CO₂ Concentration Distribution (Day: 4,393)

CO₂ Concentration Distribution (Day: 3,649)

Animation of the CO₂ mole fraction build up

Final Remarks

Increased demand on fossil fuels

Decline in production from fossil fuels

Producing HC from unconventional reservoirs and sequestering CO₂ in: Shale Gas, Tight Gas Sands, Gas Hydrates, Coal Seams and Saline Formations

Through the optimization of:

- Horizontal wellbore length
- Transverse fracture spacing
- •Fracture wing length
- Multilateral well design
- •Well spacing
- Reservoir pressure depletion rate