CO₂ Capture Technologies for Power Generation The Challenges Ahead... Dr. Prachi Singh, IEAGHG R&D Programme, UK CO₂ Capture and Storage Regional Awareness-Raising Workshop, 13-14th June 2012, Ankara, Turkey #### **Outline** #### Overview of CO₂ Capture Technology for **Power Plants** **Post Combustion** **Oxyfuel Combustion** **Pre Combustion** **Key Issues and Research Direction Conclusions** #### Overview of CO₂ Capture Technology for **Power Plants** **Pre Combustion Post Combustion Oxyfuel Combustion** **Key Issues and Research Direction Conclusions** ## International Energy Agency Greenhouse Gas (IEAGHG) R&D Programme - ☐ A collaborative international research programme founded in 1991 from IEA - ➤ Aim: Provide members with definitive information on the role that technology can play in reducing greenhouse gas emissions - Scope: All greenhouse gases, all fossil fuels and comparative assessments of technology options. - Focus: On CCS in recent years #### IEA Greenhouse Gas R&D Programme - Producing information that is: - Objective, trustworthy, independent - Policy relevant but NOT policy prescriptive - Reviewed by external Expert Reviewers - Subject to review of policy implications by Members - ☐ IEAGHG is an IEA Implementing Agreement in which the participants contribute to a common fund to finance the activities. #### **Members and Sponsors** Doosan Babcock EnBW #### What IEAGHG does - Technical evaluations of mitigation options - ✓ Comparative analyses with standardised baseline - Assist international co-operation - ✓ International research networks - Assist technology implementation - ✓ Near market research - **√** GCCSI - Disseminate information #### **Specific Focus on CCS** - Power Sector - ➤ Coal, Natural Gas and Biomass - Industrial sectors - ➤ Gas production - ➤ Oil Refining & Petrochemicals - Cement sector - ▶Iron & Steel Industry - Cross cutting issues - > Policy/Regulations - ➤ Health & Safety - Transport & System Infrastructure #### Overview of CO₂ Capture Technology for **Power Plants** **Post Combustion** **Oxyfuel Combustion** **Pre Combustion** **Key Issues and Research Direction Conclusions** ### World Primary Energy Demand by Fuel #### Strategy to Reduce CO₂ Emission 11 ### Reducing CO₂ Emission *IEA Energy Technology Prospective 2010* ### Carbon Capture and Storage (CCS) Power & Heat CO₂ Source: EPRI 2007 Coal #### **Outline** Overview of CO₂ Capture Technology for **Power Plants** **Post Combustion** **Oxyfuel Combustion** **Pre Combustion** **Key Issues and Research Direction Conclusions** #### **Post Combustion Capture** #### **Why Post Combustion Capture?** ### **Post Combustion Capture Unit** #### **Chemical Versus Physical Absorption** Low partial pressure (p₁): $$C_{1ph} < C_{1ch}$$ Chemical absorption deserves preference p₂: reverse ## Main reaction with CO₂ and amine based solvent Acid Base Temperature Dependent Reversible Reaction ## Commercially available solvents systems | Process Concept | Example | Developers | | | |---|-----------------------------|--|--|--| | Conventional MEA | Econamine + | Fluor, ABB | | | | Ammonia | Chilled Ammonia | Alstom | | | | Hindered Amines | KS-1, AMP, | MHI, EXXON | | | | Tertiary Amines | MDEA | BASF, DOW | | | | Amino Acid Salts | CORAL | TNO, Siemens, BASF | | | | Piperazine | | Uni Texas | | | | HiCapt, DMX | Mixture | IFP | | | | Integrated SO ₂ /CO ₂ | Amines | Cansolv/Shell | | | | Amine | | Aker Clean Carbon | | | | Chemical solvents | DEAB, KoSol, Calcium based, | HTC, Uni Regina, KEPRI, NTNU, SINTEF, CSIRO, KEPRI, EnBW | | | ### **Challenges in Post Combustion Capture** **CO₂ Absorption Capacity** & Kinetics - Degradation - Corrosion - Heat stable salt - Volatile organic compound e.g. Nitrosamine Regeneration temperature Reaction enthalpy - Detailed Model development - Process Integration ### **Post Combustion Pilot Projects** | r ost Combustion r not r rojects | | | | | | | |---|--------------------------------------|---------------------|---------------|--|--|--| | Project | Plant &
Fuel Type | Year of
Start-up | Plant
Size | CO ₂ Captured (Mtonne/year) | | | | American Electric Power Mountaineer Plant, Chilled Ammonia, USA | Coal-fired
Power Plant | 2009 | 20 MW | 0.1 | | | | <i>Matsushima Coal Plant</i> , Amine (MHI), Japan | Coal-fired Power Plant | 2006 | 0.8 MW | 0.004 | | | | Munmorah Pilot Plant, Ammonia
Delta, CSIRO, Australia | Coal-fired Power Plant | 2008 | 1 MW | 0.005 | | | | CASTOR CO2 Capture to Storage Amine (Multiple) Denmark | Coal-fired Power Plant | 2008 | 3 MW | 0.008 | | | | Eni and Enel Federico II Brindisi Power Plant, Amine Enel, Italy | Coal-fired Power Plant | 2009 | 1.5 MW | 0.008 | | | | CATO-2 CO2 Catcher, Amine (Multiple), Netherlands | Coal-fired Power Plant | 2008 | 0.4 MW | 0.002 | | | | CaOling project , Carbonate looping Spain | Coal-fired Power Plant | 2011 | ~0.6
MW | 0.007 | | | | Statoil Mongstad Cogeneration Pilot Chilled Ammonia Alstom; Amine, AkerClean Carbon, Norway | Natural gas-
fired
Power Plant | 2012 | 15 MW
7MW | 0.080
0.020 | | | | PGE Bechatów Power Station,
Amine Alstom & Dow Chem. Poland | Coal-fired Power Plant | 2014 | 20 MW | 0.1 | | | #### What's Next **Pilot Plants** Castor Pilot Plant (2t/d) MHI Large Scale Demo Unit Commercial Scale Demonstration Overview of CO₂ Capture Technology for **Power Plants** **Post Combustion** **Oxyfuel Combustion** **Pre Combustion** **Key Issues and Research Direction Conclusions** #### **Oxyfuel Combustion Technology** ### **Cryogenic Air Separation Capacity Increase** 1902 5 kg/h (0,1 ton/day) Source: Linde # CO2 Recovery ## Oxygen Production : Cryogenic Air Separation ## Oxygen Production Cost Reduction Options #### **Ion Transport Membrane** #### **Chemical looping Combustion** Source: Air Products #### **Oxyfuel Boiler** Source: Alstom ### CO₂ Purification and Compression Source: Air Products CO₂ Purification and Compression Required demonstration of Auto-NO should Refrigeration Cycle of Impure CO₂ be avoided 25 mol% CO₂ Corrosion 75 mol% Inerts Required CO₂ Purity? Dryer CO₂ Compression CO, to Storage 96 mol% CO₂ Acid Gas Reesows! Un 76 mol% CO₂ 4 mol% Inert 24 mol% Inerts Source: Air Products 32 **Source:** Air Products ## Oxyfuel Large Scale Pilot and Demo Projects | Project | Plant & Fuel
Type | Year of Start-up | Plant Size | CO ₂ Captured (Mtonne/year) | |-----------------------------------|----------------------|------------------|-----------------------------|--| | Schwarze Pumpe | Coal-fired | 2008 | 30 MW_{th} | 0.075 | | (Spremberg, Germany) | boiler | 2000 | (~10 MW) | 0.073 | | Total Lacq | Natural gas-fired | 2009 | 30 MW_{th} | 0.075 | | (Lacq, France) | boiler | 2003 | (~10 MW) | 0.073 | | OxyCoal UK | Coal-fired | 2009 | $40 \text{ MW}_{\text{th}}$ | N/A | | (Renfrew, Scotland) | boiler | 2003 | (~13 MW) | IN//A | | CIUDEN | Coal-fired | 2011 | $20 \text{ MW}_{\text{th}}$ | <0.092 | | (Cubillos del Sil, Spain) | boiler | 2011 | (~7 MW) | \0.032 | | CS Energy Callide A | Coal-fired | 2012 | 30 MW _{th} | 0.3 | | (Biloela, Australia) | boiler | | 30 WW th | 0.5 | | FutureGen 2.0 | Coal-fired | 2015 | 200 MW | 1.3 | | (Meredosia, Illinois, USA) | boiler | 2010 | 200 10100 | 1.0 | | Datang Daqing | Coal-fired | 2015 | 350 MW | ~1.0 | | (Heilongjiang, China) | boiler | 2010 | 330 10100 | 1.0 | | OXYCFB300 | Coal-fired | 2015 | 300 MW | N/A | | (Cubillos del Sil, Spain) | boiler | 2010 | JOO IVIVV | 1 1/7 | | Oxy CCS Demonstration | Coal-fired | 2016 | 426 MW _a | ~2.0 | | (North Yorkshire, UK) | boiler | 2010 | 420 WVg | 34 | Overview of CO₂ Capture Technology for **Power Plants** > **Post Combustion Oxyfuel Combustion** **Pre Combustion** **Key Issues and Research Direction Conclusions** #### **Pre-Combustion Capture** Source: Vattenfall **CO Shift Reactor: H₂ Selective Membrane Reactor** # Sorption Enhanced Water Gas Shift Reactor (SEWGS) - Catalyst is combined with CO₂ sorbent - When sorbent is saturated with CO₂, it is regenerated with steam - H₂ is produced at higher temperature and pressure. # Conventional CO₂ Scrubbing # **Key Development Area for Pre- Combustion** - Development in Gasifier Technology - ✓ Adaptation of the Gasifier for CO₂ capture... - Development in Air Separation Units - ✓ Membrane Technology??? - Development in Shift Reactor - ✓ Choice of Sour Vs. Sweet Shift Reaction - Development in Separation of CO₂ using Physical Absorption technology ### Pre Combustion Full Scale Demo. Projects | Project | Plant & Fuel
Type | Year of
Start-up | Plant Size | CO ₂ Captured (Mtonne/year) | |---|-------------------------------------|---------------------|-------------------------------------|--| | GreenGen, Tianji Binhai,
China | Coal IGCC and poly-generation | 2011 | 250 MW | N/A | | Don Valley IGCC , Selexol, Stainforth, UK | Coal-IGCC | 2014 | 900 MW | 4.5 | | SummitPower, Rectisol, Penwell, Texas | Coal IGCC and polygen (urea) | 2014 | 400 MW _g | 3.0 | | Hydrogen Energy, Kern
County, California | Petcoke IGCC | 2016 | 250 MW | 2 | | RWE Goldenbergwerk,
Hurth, Germany | Lignite-IGCC | 2015 | 360 MW | 2.3 | | Belle Plaine , Saskatchewan, Canada | Coal & PetCoke | N/A | 500 MW | >1 | | Kedzierzyn Zero Emission
Power and Chemicals, Opole,
Poland | Coal-biomass
IGCC and
polygen | 2015 | 309 MW
500 ktons
/yr methanol | 2.4 | | Nuon Magnum,
Eeemshaven, Netherlands | Multi-fuel IGCC | 2015 | 1200 MW _g | N/A | #### Performance and Cost of CO₂ Capture Overview of CO₂ Capture Technology for **Power Plants** > **Post Combustion Oxyfuel Combustion Pre Combustion** **Key Issues and Research Direction Conclusions** ## Challenges for CCS in Power Generation **Impact** Reducing CO₂ **Capture Cost** Reducing **Energy Penalty** Non-technological Issues #### **Concluding Remarks** - CCS will play an important role in reducing greenhouse gas emissions from the power generation sector. - Several activities have been initiated worldwide in the development of Carbon Capture for Power Generation industry. - There are two set of horse race among the three options for newly build and retrofit plant. <u>There is no leader at</u> <u>the moment!</u> - We <u>need large scale demonstration</u> of the carbon capture technology to build the confidence necessary for a rapid deployment. - We <u>need to overcome the challenges that CCS</u> should face toward its path to commercialisation. ### Thank you E-mail: prachi.singh@ieaghg.org Website: www.ieaghg.org GHGT-11 Kyoto, Japan www.ghgt.info 18th - 22nd Nov. 2012