

CO₂ Capture Technologies for Power Generation The Challenges Ahead...

Dr. Prachi Singh, IEAGHG R&D Programme, UK

CO₂ Capture and Storage Regional Awareness-Raising Workshop, 13-14th June 2012, Ankara, Turkey

Outline

Overview of CO₂ Capture Technology for **Power Plants**

Post Combustion

Oxyfuel Combustion

Pre Combustion

Key Issues and Research Direction Conclusions

Overview of CO₂ Capture Technology for **Power Plants**

Pre Combustion Post Combustion Oxyfuel Combustion

Key Issues and Research Direction Conclusions

International Energy Agency Greenhouse Gas (IEAGHG) R&D Programme

- ☐ A collaborative international research programme founded in 1991 from IEA
 - ➤ Aim: Provide members with definitive information on the role that technology can play in reducing greenhouse gas emissions
 - Scope: All greenhouse gases, all fossil fuels and comparative assessments of technology options.
 - Focus: On CCS in recent years

IEA Greenhouse Gas R&D Programme

- Producing information that is:
 - Objective, trustworthy, independent
 - Policy relevant but NOT policy prescriptive
 - Reviewed by external Expert Reviewers
 - Subject to review of policy implications by Members
- ☐ IEAGHG is an IEA Implementing Agreement in which the participants contribute to a common fund to finance the activities.

Members and Sponsors

Doosan Babcock

EnBW

What IEAGHG does

- Technical evaluations of mitigation options
 - ✓ Comparative analyses with standardised baseline
- Assist international co-operation
 - ✓ International research networks
- Assist technology implementation
 - ✓ Near market research
 - **√** GCCSI
- Disseminate information

Specific Focus on CCS

- Power Sector
 - ➤ Coal, Natural Gas and Biomass
- Industrial sectors
 - ➤ Gas production
 - ➤ Oil Refining & Petrochemicals
 - Cement sector
 - ▶Iron & Steel Industry
- Cross cutting issues
 - > Policy/Regulations
 - ➤ Health & Safety
 - Transport & System Infrastructure

Overview of CO₂ Capture Technology for **Power Plants**

Post Combustion

Oxyfuel Combustion

Pre Combustion

Key Issues and Research Direction Conclusions

World Primary Energy Demand by Fuel

Strategy to Reduce CO₂ Emission

11

Reducing CO₂ Emission *IEA Energy Technology Prospective 2010*

Carbon Capture and Storage (CCS)

Power & Heat

CO₂

Source: EPRI 2007

Coal

Outline

Overview of CO₂ Capture Technology for **Power Plants**

Post Combustion

Oxyfuel Combustion

Pre Combustion

Key Issues and Research Direction Conclusions

Post Combustion Capture

Why Post Combustion Capture?

Post Combustion Capture Unit

Chemical Versus Physical Absorption

Low partial pressure (p₁):

$$C_{1ph} < C_{1ch}$$

Chemical absorption deserves preference

p₂: reverse

Main reaction with CO₂ and amine based solvent

Acid Base Temperature Dependent Reversible Reaction

Commercially available solvents systems

Process Concept	Example	Developers		
Conventional MEA	Econamine +	Fluor, ABB		
Ammonia	Chilled Ammonia	Alstom		
Hindered Amines	KS-1, AMP,	MHI, EXXON		
Tertiary Amines	MDEA	BASF, DOW		
Amino Acid Salts	CORAL	TNO, Siemens, BASF		
Piperazine		Uni Texas		
HiCapt, DMX	Mixture	IFP		
Integrated SO ₂ /CO ₂	Amines	Cansolv/Shell		
Amine		Aker Clean Carbon		
Chemical solvents	DEAB, KoSol, Calcium based,	HTC, Uni Regina, KEPRI, NTNU, SINTEF, CSIRO, KEPRI, EnBW		

Challenges in Post Combustion Capture

CO₂ Absorption Capacity & Kinetics

- Degradation
- Corrosion
- Heat stable salt
- Volatile organic compound e.g.
 Nitrosamine

Regeneration temperature Reaction enthalpy

- Detailed Model development
- Process Integration

Post Combustion Pilot Projects

r ost Combustion r not r rojects						
Project	Plant & Fuel Type	Year of Start-up	Plant Size	CO ₂ Captured (Mtonne/year)		
American Electric Power Mountaineer Plant, Chilled Ammonia, USA	Coal-fired Power Plant	2009	20 MW	0.1		
<i>Matsushima Coal Plant</i> , Amine (MHI), Japan	Coal-fired Power Plant	2006	0.8 MW	0.004		
Munmorah Pilot Plant, Ammonia Delta, CSIRO, Australia	Coal-fired Power Plant	2008	1 MW	0.005		
CASTOR CO2 Capture to Storage Amine (Multiple) Denmark	Coal-fired Power Plant	2008	3 MW	0.008		
Eni and Enel Federico II Brindisi Power Plant, Amine Enel, Italy	Coal-fired Power Plant	2009	1.5 MW	0.008		
CATO-2 CO2 Catcher, Amine (Multiple), Netherlands	Coal-fired Power Plant	2008	0.4 MW	0.002		
CaOling project , Carbonate looping Spain	Coal-fired Power Plant	2011	~0.6 MW	0.007		
Statoil Mongstad Cogeneration Pilot Chilled Ammonia Alstom; Amine, AkerClean Carbon, Norway	Natural gas- fired Power Plant	2012	15 MW 7MW	0.080 0.020		
PGE Bechatów Power Station, Amine Alstom & Dow Chem. Poland	Coal-fired Power Plant	2014	20 MW	0.1		

What's Next

Pilot Plants

Castor Pilot Plant (2t/d)

MHI Large Scale Demo Unit

Commercial Scale Demonstration

Overview of CO₂ Capture Technology for **Power Plants**

Post Combustion

Oxyfuel Combustion

Pre Combustion

Key Issues and Research Direction Conclusions

Oxyfuel Combustion Technology

Cryogenic Air Separation Capacity Increase

1902 5 kg/h (0,1 ton/day)

Source: Linde

CO2 Recovery

Oxygen Production : Cryogenic Air Separation

Oxygen Production Cost Reduction Options

Ion Transport Membrane

Chemical looping Combustion

Source: Air Products

Oxyfuel Boiler

Source: Alstom

CO₂ Purification and Compression

Source: Air Products

CO₂ Purification and Compression Required demonstration of Auto-NO should Refrigeration Cycle of Impure CO₂ be avoided 25 mol% CO₂ Corrosion 75 mol% Inerts Required CO₂ Purity? Dryer CO₂ Compression CO, to Storage 96 mol% CO₂ Acid Gas Reesows! Un 76 mol% CO₂ 4 mol% Inert 24 mol% Inerts Source: Air Products

32

Source: Air Products

Oxyfuel Large Scale Pilot and Demo Projects

Project	Plant & Fuel Type	Year of Start-up	Plant Size	CO ₂ Captured (Mtonne/year)
Schwarze Pumpe	Coal-fired	2008	30 MW_{th}	0.075
(Spremberg, Germany)	boiler	2000	(~10 MW)	0.073
Total Lacq	Natural gas-fired	2009	30 MW_{th}	0.075
(Lacq, France)	boiler	2003	(~10 MW)	0.073
OxyCoal UK	Coal-fired	2009	$40 \text{ MW}_{\text{th}}$	N/A
(Renfrew, Scotland)	boiler	2003	(~13 MW)	IN//A
CIUDEN	Coal-fired	2011	$20 \text{ MW}_{\text{th}}$	<0.092
(Cubillos del Sil, Spain)	boiler	2011	(~7 MW)	\0.032
CS Energy Callide A	Coal-fired	2012	30 MW _{th}	0.3
(Biloela, Australia)	boiler		30 WW th	0.5
FutureGen 2.0	Coal-fired	2015	200 MW	1.3
(Meredosia, Illinois, USA)	boiler	2010	200 10100	1.0
Datang Daqing	Coal-fired	2015	350 MW	~1.0
(Heilongjiang, China)	boiler	2010	330 10100	1.0
OXYCFB300	Coal-fired	2015	300 MW	N/A
(Cubillos del Sil, Spain)	boiler	2010	JOO IVIVV	1 1/7
Oxy CCS Demonstration	Coal-fired	2016	426 MW _a	~2.0
(North Yorkshire, UK)	boiler	2010	420 WVg	34

Overview of CO₂ Capture Technology for **Power Plants**

> **Post Combustion Oxyfuel Combustion**

Pre Combustion

Key Issues and Research Direction Conclusions

Pre-Combustion Capture

Source: Vattenfall

CO Shift Reactor: H₂ Selective Membrane Reactor

Sorption Enhanced Water Gas Shift Reactor (SEWGS)

- Catalyst is combined with CO₂ sorbent
- When sorbent is saturated with CO₂, it is regenerated with steam
- H₂ is produced at higher temperature and pressure.

Conventional CO₂ Scrubbing

Key Development Area for Pre- Combustion

- Development in Gasifier Technology
 - ✓ Adaptation of the Gasifier for CO₂ capture...
- Development in Air Separation Units
 - ✓ Membrane Technology???
- Development in Shift Reactor
 - ✓ Choice of Sour Vs. Sweet Shift Reaction
- Development in Separation of CO₂ using Physical Absorption technology

Pre Combustion Full Scale Demo. Projects

Project	Plant & Fuel Type	Year of Start-up	Plant Size	CO ₂ Captured (Mtonne/year)
GreenGen, Tianji Binhai, China	Coal IGCC and poly-generation	2011	250 MW	N/A
Don Valley IGCC , Selexol, Stainforth, UK	Coal-IGCC	2014	900 MW	4.5
SummitPower, Rectisol, Penwell, Texas	Coal IGCC and polygen (urea)	2014	400 MW _g	3.0
Hydrogen Energy, Kern County, California	Petcoke IGCC	2016	250 MW	2
RWE Goldenbergwerk, Hurth, Germany	Lignite-IGCC	2015	360 MW	2.3
Belle Plaine , Saskatchewan, Canada	Coal & PetCoke	N/A	500 MW	>1
Kedzierzyn Zero Emission Power and Chemicals, Opole, Poland	Coal-biomass IGCC and polygen	2015	309 MW 500 ktons /yr methanol	2.4
Nuon Magnum, Eeemshaven, Netherlands	Multi-fuel IGCC	2015	1200 MW _g	N/A

Performance and Cost of CO₂ Capture

Overview of CO₂ Capture Technology for **Power Plants**

> **Post Combustion Oxyfuel Combustion Pre Combustion**

Key Issues and Research Direction Conclusions

Challenges for CCS in Power Generation

Impact

Reducing CO₂ **Capture Cost**

Reducing **Energy Penalty**

Non-technological Issues

Concluding Remarks

- CCS will play an important role in reducing greenhouse gas emissions from the power generation sector.
- Several activities have been initiated worldwide in the development of Carbon Capture for Power Generation industry.
- There are two set of horse race among the three options for newly build and retrofit plant. <u>There is no leader at</u> <u>the moment!</u>
- We <u>need large scale demonstration</u> of the carbon capture technology to build the confidence necessary for a rapid deployment.
- We <u>need to overcome the challenges that CCS</u> should face toward its path to commercialisation.

Thank you

E-mail:

prachi.singh@ieaghg.org

Website: www.ieaghg.org

GHGT-11 Kyoto, Japan www.ghgt.info 18th - 22nd Nov. 2012