

www.

CO₂ Capture Technologies for Industry Iron & Steel, Oil Refinery & Cement

Dr. Prachi Singh, IEAGHG R&D Programme, UK CO₂ Capture and Storage Regional Awareness-Raising Workshop, 13-14th June 2012, Ankara, Turkey

3

Overview of CO₂ Emission from Industry

CO₂ Capture from Industry

- - Iron and Steel
 - Oil Refinery Cement

Conclusions

CO₂ Emission from Industry IEA Energy Technology Perspective 2010

Industrial CO₂ Emission Reduction from CCS by 2050 IEA Energy Technology Perspective 2010 Reduction of 2.5Gt CO₂

Overview of CO₂ Emission from Industry

chematic diagram of possible CCS system

Conclusions

6

Steel Plant

CO₂ emission from Steel Plant

Projection of CO₂ emission from Steel sector

Strategy to Control CO₂ Emission

Reducing energy demand from Blast Furnace (BF)

Using more Scrap Metal

Major Source of CO₂ emission from still mills will remain ore based route

Largest EU R&D programme since 2004 Ultra Low CO₂ Steelmaking (ULCOS)

<u>Ultra Low CO₂ Steel making (ULCOS)</u>

> Three major CO_2 -lean process routes:

- 1. Decarbonizing: Shifting away from coal, replacing carbon by Hydrogen or Electricity,
- 2. Using Hydrogen reduction of ore or Electrolysis of iron ore
- 3. Introduction of CCS technology or the use of sustainable biomass.

In near term Top Gas Recycling Blast Furnace (TGR-BF) is most promising and can be retrofitted

Top Gas Recycling Blast Furnace (TGR-BF) C 10

Japanese "Course 50 Programme"

COURSE50 / CO₂ Ultimate Reduction in Steelmaking Process by Innovative Technology for Cool Earth 50

Major gaps and Barriers

There are no steel mill in this world which are alike...

- Steel are produced with different processes
- Steel are produced with different type of finished or semifinished products
- Steel are produced with different grades
- Cost of CO₂ capture
- Timeline
- \geq Extra burden from CO₂ purity

Overview of CO₂ Emission from Industry

CO₂ Capture from Industry

chematic diagram of possible CCS system

Basic Refinery Concept

Hydroskimming/ Topping Refinery

Simple, low upgrading capability refineries run sweet crude Source: VALERO

High Conversion: Coking Resid Distruction

Complex refineries can run heavier and more sour crudes while achieving the highest light

CO₂ Emission Breakdown by Process

Hydroskimming Refinery 0.6MtCO₂/annum

Conversion Refinery 1.4MtCO₂/annum

Distribution of CO₂ emission by Source in a Complex Refinery

Technology Selection for CO₂ capture

Source: Concawe 2011

22

Possible Refinery CO₂ Capture

Alternative CO₂ Capture Technology

Oxyfuel Combustion

 FCC unit air is replaced with pure oxygen diluted by recycled CO₂ to maintain thermal balance and catalyst fluidization will produce 95% CO₂

Chemical Looping Combustion

Continuous Fluidized circulation of oxygen career in FCC

Pre Combustion

 Can be applied to gasify the carbonaceous feed to produce Hydrogen and pure CO₂

Challenges and Barriers

Refinery retrofit is complex and expensive

- CO₂ Capture needs Utilities → require more energy production from utilities
- Increases Capex and Opex
- Different CO₂ capture cost will be achieved with different refinery Specification
- Require CCS design guideline for new Refinery

Overview of CO₂ Emission from Industry

Conclusions

26

Cement Industry

Process Control

Emission Monitoring

Direct CO₂ Emission- Clinker

CO₂ Emission Reduction Strategy

Improving Thermal and Electrical Efficiency

Using Alternative Fuel e.g. Municipal waste, Discarded tyre, Plastic, textile, paper, Biomass

Substitution of Carbon-Intensive Clinker by using blast furnace slag, fly ash from coal power plant

Capturing CO₂ before emission to atmosphere by CCS from fuel combustion and kiln by Post and Oxy Combustion Capture

Post Combustion at Cement plant Require low pressure CO₂ Purification and transport and steam, CHP compression storage More Gas Exhaust gas cleaning CO₂ Capture System: cleaning Cleaning amine / ammonia scrubbing system or calcium looping De-Dust - De-No, - De-So, - Burners -+ Flue gas Production Pre-Heater Raw Mill Precalciner Rotary kiln Cooler process Clinker Raw material Integration

Source: Mott MacDonald 2010

Oxyfuel Combustion at Cement plant: Total Capture

Source: Mott MacDonald 2010

Gaps and Challenges for Cement Industry

- Low SO₂ and NO₂ concentration in flue gas for post combustion.
- > Overall **plant integration** is required.
- Steam requirement for solvent regeneration may be an issue in countries like India
- Increase requirement of land use
- Influence of O₂/CO₂ atmosphere on the design and operation of the preheater, pre-calciner and kiln
- Oxyfuel changes the product quality
- Reliability issue due to change in combustion characteristic

Gaps and Challenges for Cement Industry

- \geq Main bottleneck for CO₂ Capture is the **cost**
- Cement Kilns are mostly located at limestone quarries which may not be near to storage site.
- Increase water demand with CO₂ capture unit may represent significant challenge based on site
- Intermittent operation of the cement plant due to market demand
- Technical and financial implication for cement industry is not well understood require more R&D.
- Carbon capture technology in the cement industry will not be ready before 2020.

Source: Mott MacDonald 2010

Current CCS Activities in Industry

Top Gas Recycle, Pilot Plant for 24% CO₂ reduction, 2007, LKAB, Lulea, **Sweden** Top Gas Recycle Demo Plant 2010 & 2015, Arcelor Mittal, **Germany and France**

Pre-combustion, Pilot 0.4mtCO₂ /annum, 2010, Shell, **The Netherlands**

Mongstad Refinery TCM, Pilot 0.3 mt CO₂/ annum Bergen, Norway

European Cement Research Academy (ECRA) Phase III, IV and V CCS project: Demo plant DOE Funded CEMEX Demo Plant, USA

Overview of CO₂ Emission from Industry

CO₂ Capture from Industry

- Iron and Steel
 - **Oil Refinery**
 - Cement

Conclusions

Concluding Remark

CCS represents the most important new technology option for reducing direct emissions in Industry

- Development of CO₂ transportation and Storage needs to be coordinated between sectors to lower the cost
- Greater *investment from Government and Industry is needed* for research, develop, demonstrate and deploy
 CCS
- Clear and Stable long term policies that put a price on CO₂ emissions will be required when industry is to implement the technology for deep emission reduction

Thank you

E-mail: prachi.singh@ieaghg.org

Website: www.ieaghg.org

www.ieaghg.org

GHGT-11 Kyoto, Japan <u>www.ghgt.info</u> 18th - 22nd Nov. 2012