

An Overview of Monitoring Techniques for CO₂ Storage sites

Dave Jones and Andy Chadwick

British Geological Survey

Monitoring – why?

SITE PERFORMANCE: CURRENT AND FUTURE (EC Storage Directive)

- Image CO₂ in the reservoir
- Monitor containment risks
- Show site is currently performing as expected
 - Identify deviations and remediate
- Constrain predictions of long-term site behaviour
- Enable site closure

→ Principally deep - focussed technologies

EMISSIONS ACCOUNTING (EU ETS / National Inventories)

- Monitor outer envelope of the storage complex
 - Measure emissions

→ Principally shallow - focussed technologies

CO2ReMoVe site monitoring

Deep-focussed monitoring at Sleipner (1)

CO₂ injection commenced 1996
~ 1 Mt CO₂ injected per annum
> 13 Mt currently *in situ*

Time-lapse 3D (4D) seismic 2D seismic Time-lapse seabed gravimetry CSEM Seabed imaging

Deep-focussed monitoring at Sleipner (2)

Gravimetry: complementary constraints on density and dissolution CSEM: Possible constraints on saturation (in progress)

Deep-focussed monitoring at Sleipner (3)

observed layer growth

simulated layer growth

Detailed history-matching of growth of topmost layer Some uncertainties $-CO_2$ mobility, feeder distribution topseal topography

Mixed Monitoring at In Salah (1)

Three CO₂ injectors: Kb-501, 502 and 503
3 Mt CO₂ have been injected since 2004
Multiple deep and shallow-focussed tools

Mixed Monitoring at In Salah (2)

Correlation between surface displacements (mm-scale) and seismic changes at depth

Mixed Monitoring at In Salah (3)

concentrations

00806

101 30

ecosystems

Pilot-scale laboratories: Ketzin (1)

- Electrical Resistance Tomography
- Borehole-surface EM
- •Surface monitoring

Pilot-scale laboratories: Ketzin (2)

Distributed (downhole) temperature sensor

Pilot-scale laboratories: K12-B

Innovative tools (1): Seismic methods

Trace inversion, amplitude-offset studies, thin layer tuning, velocity and attenuation tomography

Also research into passive seismics and electrical methods

Innovative Tools (2): Emissions monitoring (offshore)

seawater chemistry

seabed gas sampling

Monitoring Strategies

Importance of baselines

Key tools

Cost-effective monitoring programmes

Key Monitoring Messages

Baselines – Weyburn

THE GLOBE AND MAIL										
Home News Commentary Business Investing Sports Life Ar										
National	Politics Worl	d Nours V	7:							
Indefondi	Fondes Work	u news v	laeo							
Toronto	British Columbia	Prairies	Ontario	Quebec	Atlantic					

RESULTS DASHBOARD NEWS

PARTIES CAMPAIGN NOTEBOOK

IN PICTURES

Carbon capture leak forces Saskatchewan couple to leave farm

Published Tuesday, Jan. 11, 2011 6:12PM EST

Pair abandon Saskatchewan farm because of blowouts, dead animals and algae

Need to capture full natural variation/range

CO2 leaks worry Sask. farmers

Last Updatest: Tuesday, January 11, 2011 (8-45 PM ET The Canadian Press

A Saskatchewan farm couple says greenhouse gases that were supposed to be stored permanently underground are leaking out, killing animals and sending groundwater foaming to the surface like shaken-up soda pop

Couple says CO2 leaking 1:49

Cameron and Jane Kerr took this picture of what they say is gas bubbling from water on their property.

Cameron and Jane Kerr, who own land above the Weyburn oilfield in eastern Saskatchewan, have released a consultant's report that claims to link high concentrations of carbon dioxide in their soil to gas injected underground every day.

"We've lost a home, we've got a back yard full of sand and gravel that we don't think we can sell," Cameron Kerr told CBC News Tuesday.

Energy giant Cenovus injects 8,000 tonnes of the gas every day in an attempt to enhance oil recovery and fight climate change.

Cameron Kerr says ponds on his land have developed algae blooms, clots of foam and scum, while small animals have been found dead a few metres away.

A consultant found high concentrations of carbon dioxide in the soil that matches the carbon dioxide Cenovus has been injecting, he says.

Baselines – Sleipner

It all looked so promising - tidy carbon dioxide away underground and forget about it. But even as the US's first large-scale sequestration operation is getting off the ground at the Mountaineer plant in West Virginia, geophysicists are concerned that burying the carbon could trigger earthquakes and tsunamis.

Potential monitoring tools: world deployments

	Sleipner	Snovit	K12-B	In Salah	Ketzin	Kaniow	Weyburn		Innovative tools		Nagaoka	Otway	Frio	Cranfield
	offshore	offshore	offshore	onshore	onshore	onshore	onshore		onshore and offshore	\square	onshore	onshore	onshore	onshore
	(~900m)	(~2700m)	(~3800 m)	(~1900m)	(~600m)	(~1100m)	(~1400m)			Ц	(~1100m)	(~2100 m)	(~1500m)	(~3100 m)
Deep-focussed														
3D/4D surface seismic								_						
2D surface seismic										\square				
Gravity surface										\square				
Seabed CSEM										\square				
Wellhead P,T														
Wellhead/annulus sampling														
Downhole P,T														
Continuous temperature (DTS)														
Geophysical logs														
Crosshole seismics														
Downhole fluid chemistry														
Micro (passive) seismics														
Electromagnetic wellbore														
Electromagnetic surface										\Box				
Spontaneous potential										\Box				
Tracers										\Box				
Monitoring shallow aquifers										\Box				
Downhole well integrity										\Box				
VSP / MSP										\Box				
Electrical Resistivity Tomography										\Box				
InSAR										\Box				
Shallow-focussed														
Multibeam echosounding														
Sidescan sonar														
Tiltmeters														
Bubble-stream detection														
Bubble-stream chemistry														
Soil gas/surface flux														
Flux towers (eddy covariance)														
Passive detectors														
Ecosystem (including biomarkers)														
Microbiology														
Seabottom ROV video														
Deployed/analysed in CO2ReMoVe														
Deployed/analysed in other projects														

Some tools are effective, some are not Some tools require dedicated infrastructure (e.g instrumented wellbores) Can verify performance predictions at pilot-scale Many not realistic / viable at industrial scale

Key deep-focussed tools (3D time-lapse seismic)

Sleipner Offshore: 800m

Key deep-focussed tools (reservoir pressure)

Plus e.g. Cranfield (reservoir + overburden)

Ketzin (downhole)

Shallow-focussed methodologies (1)

Need pointwise + spatial measurements

Shallow-focussed methodologies (2)

10m

Spatial and point measurements

Cost-effective monitoring systems

HIGH-LEVEL OBJECTIVES

- Assurance of integrity and safety
- Address identified risks
- Verify (predictive) performance models
- Detect leakage (from the Storage Complex)
- Confirm permanent containment within the Storage Complex
- Quantify emissions if leakage detected

SPECIFIC OBJECTIVES

- Plume imaging in the reservoir
- CO₂ migration in the overburden (storage complex)
- Predictive model calibration and verification
- Storage processes and efficiency
- Topseal integrity
- Leakage warning and detection
- Emissions measurement
- Public acceptance

The Core Monitoring Programme

To meet the regulatory requirements of a conforming site (i.e. one that behaves as expected during its lifetime).

It is aimed at performance verification, the monitoring and management of any site-specific containment risks identified in the Framework for Risk Assessment and Management (FRAM) and the detection of performance irregularities including early warning of potential leakage.

MONITORING THAT <u>WILL</u> BE CARRIED OUT AS PART OF ROUTINE SITE OPERATION

The Additional Monitoring Programme

To meet the requirements of a storage site that does not perform as expected i.e. one in which irregularities have become significant.

Address possible range of significant irregularities and the needs of any associated remediation actions.

PORTFOLIO OF TOOLS HELD IN RESERVE FOR USE IN THE EVENT OF A SIGNIFICANT IRREGULARITY

Monitoring Strategy flowchart

Typical offshore storage site - Core Monitoring

Typical offshore storage site - Additional Monitoring: Leakage

Typical offshore storage site - Additional Monitoring: Emissions

Key monitoring findings

Monitored site performance always deviates from predictions

• Key is to establish what constitutes an acceptable deviation and demonstrate convergence of prediction and observations with time

Robust monitoring baseline datasets key to effective performance verification.

- Weyburn (shallow monitoring baseline proved worth)
- In Salah (lack of satisfactory 3D seismic baseline significant drawback)

Different monitored parameters can be used to verify performance depending on site characteristics

- Sleipner plume migration and overburden imaging
- In Salah pressure and surface displacement
- Snohvit pressure and plume migration

For deep-focussed assurance (particularly offshore) a limited portfolio of monitoring tools is likely to be required

- Sleipner seismic, seabed imaging, but we need robust site characterisation
- Snohvit pressure and seismic

Shallow-focussed assurance needs to establish emissions and also environmental baselines

Emissions measurement (if required) is very challenging

- Point and areal measurements
- Precise quantification likely to be impossible
- Integrate measurements with leakage models to provide quantification

Focussed wholly on regulatory requirements

Acknowledgements

CO₂ReMoVe project (EC FP6)

http://www.co2remove.eu/

Project Reference: 518350 Contract Type: Integrated Project Start Date: 2006-03-01 End Date: 2012-02-29