

Preliminary Results of the Investigation of the Interaction of CO_2 and CH_4 Hydrate for the Determination of Feasibility of CO₂ storage in Black Sea Sediments

ngddar Separator

Θ

t)

Oytun Örs and Assistant Prof. Dr. Çağlar Sınayuç Department of Petroleum and Natural Gas Engineering, Middle East Technical University, Ankara, Turkey

PURPOSE OF THE WORK

Aim of this study is to determine the feasibility of $\rm CO_2$ disposal below the methane hydrate stability zone in the Black Sea. Seismic studies conducted by Korsakov et al. (1989) suggests that the Black Sea is among the regions that have been cited in the literature as having conditions suitable for natural gas hydrate reserves. Also, Russian scientists confirmed by seismic studies that there are five regions in the Black Sea which are highly promising for hydrate formation. Furthermore, evidences of methane hydrate accumulation (Fig. 1) and volume of methane at STP (Standard temperature and pressure) (Fig. 2) makes the Black Sea technically and economically feasible site for the CO_2 sequestration, especially when the amount of CH₄ that might be produced from the hydrates is considered. As a result this study mainly focuses on the following topics;

- ♦ Interaction between the injected CO₂ and the methane hydrate.
 ♦ CO₂ and CH₄ hydrate formation within the sediments.
 ♦ Sealing efficiency of CH₄ hydrate.
- Possible CH₄ production while sequestrating CO₂.

INTRODUCTION

Recently, secure sequestration of anthropogenic carbon dioxide in geological formations has become one of the most important global scientific in problems. Injection into deep sea sediments offers some unique and significant advantages such as, huge storage capacities and significant risk reduction for possible CO_2 leakage, when compared with the other potential geological storage options. Disposal of CO_2 into deep sea sediments is safer than disposal into

bolions. Disposal of Co_2 into deep sea sediments is safer than disposal into land since the water prevent direct emission of Co_2 into the air. For the storage of huge amounts of Co_2 , geological structure must contain an impermeable or low-permeable barrier. In general such a barrier may consist of clay or salt. In this study, sealing efficiency of methane hydrate and long term fate of the Co_2 disposal under the methane hydrate zone will be investigated. investigated.

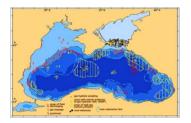


Figure 1. Evidences of methane hydrate from the Black Sea (L. Dimitrov and A. Vassilev)

NATURAL GAS HYDRATES

Gas hydrates, also called gas clathrates, Gas hydrates, also called gas clathrates, are solid, crystalline, ice like materials, which may form under suitable pressure and temperature values. In general, formation of gas hydrates requires low temperature and high pressure and most of the deep sea sediments satisfy these conditions. Gas hydrates consists of water cavities (host) that are composed of hydrogen_barded water malecular and hydrophebic hydrogen-bonded water molecules and hydrophobic gas molecules (guests) that are encapsulated in water cavities. Methane, ethane, propane and carbon dioxide are the some common gas molecules which are trapped in water cavities to form clathrates.

THEORY

First of all, the deep storage of CO_2 requires injection into warm rocks that are at least 800 m deep. During deep storage of CO_2 , there is always great possibility that some CO_2 may migrate upwards at some time. CO_2 leakage may occur through small faults/fractures, or poorly sealed boreholes. At this time, CO_2 hydrate stability zone become crucial phenomena. Because, if the CO_2 hydrate stability of water, then leaked CO_2 may enter into CO_2 hydrate may decrease the permeability of cap rock by partially or even completely plugging flow pathways (As in the case of methane hydrate plugs pipelines). plugs pipelines).



Figure 2. Volume of methane (STP) in hydrate at the Black Sea, (B.Klauda and I.Sandler,2003)

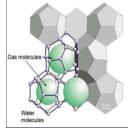
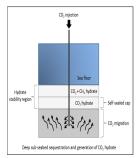



Figure 3. Structure of hydrate

gure 4. Schematic representation of the CO₂ disposal as hydrate

EXPERIMENTAL SETUP

The experimental setup that is ine experimental setup that is shown in Fig. 5 was designed for the experiments and various different tests were performed to determine the feasibility of CO₂ sequestration in Black Sea sediments. These include the CH_4 hydrate formation in both bulk conditions and within sand particles, determination of the permeability of unconsolidated sand particles that includes 30% and 50% methane hydrate saturations and injection of CO_2 into the CH_4 hydrate and for the observation of interaction between CO_2 and the CH₄ hydrate.

Figure 7. Hydrate formation within the medium grained sediments

imp T

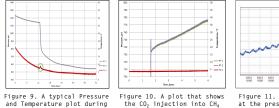

an 📘

Figure 6. Hydrate rmation at the interface of water and free gas formation at

Figure 8. Hydrate dissociation within the medium grained sediments

Figure 5. The Schematic Diagram of the Experimental Setup

During this study, CH_4 hydrate was formed in bulk conditions at the interface of water and free gas (Fig. 6), CH_4 hydrate was formed within the medium grained sediments (Fig. 7) and sediments that contain 50% of The medium grained sediments (Fig. 7) and sediments that contain 50% of hydrate were left to dissociate (Fig. 8). Fig. 9 was taken from one of the hydrate formation experiments; the cell was packed with sand grains and 50% of the pore space was filled with water while remaining volume was filled with methane and the cell was placed into the water bath and cooling process was initiated. During hydrate formation, sharp pressure cooling process was initiated. During hydrate formation, sharp pressure decline and small increase in temperature were observed. As the free methane enters into the hydrate cages amount of free methane diminishes that causes a decline in pressure and since hydrate formation is an exothermic reaction, an increase in temperature may be observed. After converting all water to hydrate, CO_2 injection can be performed. Because, in this way, one can be sure about that injected CO_2 only interacts with the CH_4 hydrate. Fig 10. was taken from one of the experiments, in which CO_2 was injected into methane hydrate abruptly. After the CO_2 injection cyclic behaviors were observed at the pressure gauges which suggest that CO_2 hydrate into the cages while putting CH, out. Cyclic behaviors at cyclic behaviors were observed at the pressure gauges which suggest that CO_2 was entering into the cages while putting CH_4 out. Cyclic behaviors at the pressure transducers can be more easily seen from the Fig. 11. CO_2 - CH_4 swap within the hydrate cages and the corresponding increase in pressure took approximately 6.5 hours and at the end of the process sample was taken from the cell in order to analyze the gas composition. Before the CO_2 injection there were 0.4799 gr mole of free CH_4 in the cell and then. 0.4883 gr mole of CO_2 was injected. Therefore, mole fraction of CO_2 was 0.504 and that of CH_4 was 0.496. At the end of the swap process Gas Chromatography analysis indicated that mole fractions of CH_4 and CO_2 were 92 310% respectively. According to the calculations finally $22,310^\circ$ and 7.600% respectively. According to the calculations, finally, 0.80518 gr mole of free CH₄ and 0.06708 gr mole of free CO₂ were present in the cell which suggest that 86.26% of the injected CO₂ was went into the hydrate phase. Furthermore, permeability tests were carried out. Results indicated that permeability of unconsolidated sand packs that includes hydrate saturation of %50 percent is about 4 md and flow is mostly occurs through the sideways and center of the system can be thought as impermeable.

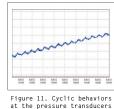


Figure 9. A typical Pressure and Temperature plot during hydrate formation

CONCLUSIONS

Following preliminary conclusions can be drawn from this study ♦ If the hydrate saturation within sediments greater than %50, then the sediments may act as an impermeable layer.

hydrate

 $\diamond \, {\rm CO}_2 \mbox{-} {\rm CH}_4$ swap within the hydrate cages is technically feasible in laboratory scale.

 \bullet State of the CO₂-CH₄-H₂O system should be analyzed at various pressure and temperature values