

CO₂ Capture for Power Generation The Challenges Ahead...

Stanley Santos

IEA Greenhouse Gas R&D Programme Cheltenham, UK

Regional Workshop for the Baltic Sea and Central & Eastern European Countries

Vilnius, Lithuania

13th April 2011

IEA Greenhouse Gas R&D Programme

- A collaborative research programme founded in 1991
- Aim: Provide members with definitive information on the role that technology can play in reducing greenhouse gas emissions.
- Producing information that is:
 - Objective, trustworthy, independent
 - Policy relevant but NOT policy prescriptive
 - Reviewed by external Expert Reviewers
 - Subject to review of policy implications by Members
- IEA GHG is an IEA Implementing Agreement in which the Participants contribute to a common fund to finance the activities.
- Activities: Studies and Reports (>120); International Research Networks : Wells, Risk, Monitoring, Modelling, <u>Oxyfuel</u>, Capture, Social Research, Solid Looping; Communications (GHGT conferences, IJGGC, etc); facilitating and focusing R&D and demonstration activities e.g. Weyburn

What IEAGHG does

- Technical evaluations of mitigation options
 - Comparative analyses with standardised baseline
- Assist international co-operation
 - International research networks
- Assist technology implementation
 - Near market research
 - GCCSI
- Disseminate information

Members and Sponsors

Technical Evaluations

6

- Recently reported
 - Water Usage and Analysis from Power Plants with CO₂ capture
 - Safety in capture and transport
 - Site characterisation criteria
 - Storage capacity coefficients
 - Well integrity
 - Biomass CCS
 - Operating flexibility of power plants with CCS

- Underway
 - Removal of impurities from CO2
 - CCS Life cycle analysis
 - Best practice guidelines for site characterisation
 - Pipeline infrastructure
 - Injection strategies for CO2 storage sites
 - Prospects for storage of CO₂ in EOR
 - Iron and Steel Techno Economic Study

International Cooperation

One of our objectives is to provide an avenue for discussion on specific issues toward development of CCS and support any confidence building activities

Research Networks

- Post Combustion CO2 Capture
- Oxyfuel Combustion
- Solid Looping
- Monitoring and modelling of CO₂ injection
- Well bore integrity
- Risk Assessment
- Communications research

Practical R,D & D

- Weyburn-Midale Canada
- TSB Project on OxySOx
- CO2SINK, Germany
- CO2Remove
- Dynamis
- MOVECBM, Poland

Implementation

- International Bodies
 - EU ZEP
 - London Convention/OSPAR
 - UNFCCC/SBSTA
 - CSLF Technical Group
 - FENCO-ERA
 - UNIDO
 - IEA/CSLF/GCCSI G8

Direct activities

- GCCSI
- IEA Regulators network
- International Summer School series
 - Mentored programmes at GHGT conferences

Dissemination

9

2nd International Oxyfuel Combustion Conference 12th – 16th September 2011 Capricorn Resort, Yeppoon, Australia

Fundación Ciudad de la Energía

Overview

- Why we need CO₂ capture and storage?
- An Overview to CO₂ CaptureTechnologies
 - Post Combustion CO₂ Capture
 - Oxyfuel Combustion with CO₂ Capture
 - Pre-Combustion CO₂ Capture
- Some of the Challenges, Key Issues and Direction of Research
- Concluding Remarks

12

Introduction

WHY WE NEED CO2 CAPTURE AND STORAGE

ENERGY TECHNOLOGY PERSPECTIVES 2010

Scenarios & Strategies to 2050

© OECD/IEA - 2010

CCS in ETP-2010: Contribution to Emissions Savings

CCS has the 2nd largest share (19%) of CO₂ reductions in 2050 (9.4 GtCO₂, or 120 GtCO₂ from 2010-2050)

- CCS contributes to 31% of emissions reductions in the power sector by 2050, comparable to renewables
- In 2050, 90% of electricity generated from coal comes from plants with CCS (plus 30% of NG plants use CCS)
- In industry & fuel transformation, CCS has the 2nd largest share (33%) of direct emissions reductions

ETP 2010 BLUE Map Scenario

Over the past 20 years... Growth in Interest in CCS has been significant

Introduction

CO₂ CAPTURE TECHNOLOGY FOR POWER GENERATION -AN OVERVIEW

CO2 Capture Options

CO₂ Abatement from Coal Fired Power Plants Requires a Twin Track Approach...

POST COMBUSTION CO₂ CAPTURE TECHNOLOGY FOR COAL FIRED POWER GENERATION

Post-Combustion Capture

CO2 Based Solvent Scrubbing

- Use of Amine scrubbing to capture CO₂ is the most mature among the 3 mostly considered capture technology options for the power generation.
- Amine based solvent is currently the commonly used for CO₂ capture
 - widely used in food processing (ie. carbonated drinks) and chemical industries (ie. Urea plant)
 - Large scale demonstration (> 1 MT/yr of scale) mostly in oil and gas fields applications
 - For example in Sleipner and In Salah
 - New projects such as Gorgon (~ 3 MT/yr in scale) using parallel train of post-capture gas treatment plant

Chemical Absorption Process

Challenges to Post CO₂ **Combustion Capture**

- Low total flue gas pressure
- Low CO₂ concentrations
- Very high flow rates (Huge columns)
- High energy demand in the reboiler (25-35% of power plant output)
- Impurities cause solvent degradation, loss of performance and equipment corrosion
- Solvent losses and waste products
- **Emissions from CO2 capture plant**

Issues for Post Combustion Capture

- Issues to be addressed in the development of Post Combustion Technologies:
 - Increase in cost of electricity
 - Reduction in Power Plant Efficiency

Solvent Process break-through required

- Energy requirements
- Reaction rates
- Contactor improvements
- Liquid capacities
- Chemical stability/corrosion
- Desorption process improvements

Integration with power plant

- Heat integration with other process plant
- Concepts for "capture readiness"

Post Combustion Capture Development

26

Process Concept	Example	Developers
Conventional MEA	Econamine +	Fluor, ABB
Ammonia	Chilled Ammonia	Alstom
Hindered Amines	KS-1, AMP,	MHI, EXXON,
Tertiary Amines	MDEA	BASF, DOW
Amino Acid Salts	CORAL	TNO, Siemens, BASF
Potassium Carbonate	K ₂ CO ₃	CO2CRC, Uni Texas
Piperazine		Uni Texas
HiCapt, DMX	Mixture	IFP
Integrated SO ₂ /CO ₂	Amines	Cansolv/Shell
Amine		Aker Clean Carbon
Chemical solvents	DEAB, KoSol, Calcium based,	HTC, Uni Regina, KEPRI, NTNU, SINTEF, CSIRO, KEPRI, EnBW
Ionic liquids		Univ of Leoben
Adsorbents	MOFs, Immobilized amine sorbents, HMS, regenerable sorbents	NETL
Membrane	Selective, FTM, Module	TPS, TNO, NETL,

Post Combustion: Where to Focus

- Novel solvents: Higher capacity, lower reaction enthalpy, stable and cheaper
- Smart process concepts and heat integration
- Capture environmental impact
- Cheaper equipments (absorber > 45% of CAPEX)
- Membranes, adsorbents and other processes have the potential as 2nd/3rd generation

Post Combustion: Where to Focus

- Novel solvents: Higher capacity, lower reaction enthalpy, stable and cheaper
- Smart process concepts and heat integration
- Capture environmental impact
- Cheaper equipments (absorber > 45% of CAPEX)
- Membranes, adsorbents and other processes have the potential as 2nd/3rd generation

OXYFUEL COMBUSTION CO₂ CAPTURE TECHNOLOGY FOR COAL FIRED POWER GENERATION

Oxy-Coal Combustion Technology

Oxy-Combustion Technology

- Use of oxygen instead of air in a boiler "Oxy-Combustion" is a feasible option for power plant with CO2 capture. With continuous demonstration of this technology... It is catching up!!!
- 3 key development issues
 - Boiler and burner development
 - Air Separation Unit "Cost and capacity of oxygen production"
 - CO₂ processing "Removal of impurities"

ANL - EERC Study World's 1st Oxy-Coal Combustion Industrial Pilot Scale Study Tower Furnace (~ 3MWth)

37

CS Energy/IHI Burner Testing Programme at Callide A Power Station

- Callide A Project would be the world's 1st oxyfuel retrofitted power station.
 - First oxyfuel pilot plant that will actually produce electricity.
 - Installation of 2 new Wall Fired Burners
 - A unique position to provide information related to the burner – burner interaction
 - Project Scope (2-4 years operation):
 - Oxygen plant (nominal 2 x 330 tpd ASUs)
 - Boiler refurbishment and oxy-fuel retrofit (1 x 30 MWe Unit)
 - CO₂ compression & purification (75 tpd process plant from a 20% side stream)
 - Road transport and geological storage (~ 30 tpd liquid CO₂)

CIUDEN CO2 Capture Programme.

- First oxyfuel pilot plant that will demonstrate in large scale the Oxy-CFB technology.
- Oxy-PC facility is very complimentary to Vattenfall's and Callide's facilities.
- Could be in a unique position to provide information related to the burner – burner interaction (in smaller scale).
- 1st facility to investigate Anthracite (this would be first in the world), Petcoke and Biomass.

38

Today... There are 3 Major Full Scale PC Burner Testing Facilities Worldwide Retrofitted for Oxyfuel

- Babcock and Wilcox (B&W) 30MWth CEDF
- Barberton, Ohio, USA
- Start of Operation: Oct. 2008
- Wall Fired Burner Development

- Doosan Babcock 40MWth in 90MWth MBTF
- Renfrew, Scotland, UK
- Start of Operation: Jun. 2009
- Wall Fired Burner Development

- Alstom Power Plant Lab. 15MWth in 30MWth BSF
- Windsor, Connecticut, USA
- Start of Operation: Nov. 2009
- T-Fired Burner Development

Courtesy of Alstom, B&W and Doosan Babcock

39

Jänschwalde demonstration plant. 500 MW with oxyfuel and post combustion capture

Key Areas of Development

• Areas of Development

- Burner and Boiler Development
- Oxygen Production
- CO2 Processing Unit
- Some of the Challenges...
 - Are we ready to demonstrate in large scale...?
 - Reducing the Cost of Oxygen Production an important aspect to the demonstration and commericialisation of oxyfuel.
 - How will the regulations define the CO2 purity???

Cryogenic Air Separation – Capacity Increase

THE LINDE GROUP

Linde AG Engineering Division

(0,1 ton/day)

1902:

5 kg/h

Oxygen Production

- As of today, the only available technology for oxygen production in large quantities is cryogenic air separation.
- Advances and Development in ASU could result to 25% less energy consumption.
 - These design would be based on either a 3 column design or dual reboiler design.

Points for Discussion...

- ~10,000 TPD of O₂ is required for a 500MWe (net) oxy-coal power plant with CCS.
 - This means that you will need 2 single trains of 5000 TPD O2
 - Largest operating ASU today (single train) ~4000 TPD O2.

Remaining Issues

- What could be the maximum capacity of oxygen production per train?
- Operation flexibility (i.e. load following, etc...)
- What will you do about the large volume of Nitrogen produced from this ASU?

Challenges to CO₂ Processing Unit

 The CO₂ processing unit could be very competitive business (an important growth area) for industrial gas companies.

• Challenges are:

- Demand of the quality requirements of the CO₂ from the power plant for transport and storage. <u>What are the</u> <u>Required Specification?</u>
- Further recovery of CO₂ from the vent will make oxyfuel more competitive if high recovery of CO₂ is required!
- <u>Need a large scale demonstration of the CO2</u> processing unit using impure CO2 as refrigerant.

Air Products' CO₂ Purification and Compression Technology for Oxyfuel

Sour Compression SOx, NOx, Hg Removal

Auto-Refrigerated Inerts Removal Ar, N₂, O₂ Air Products' PRISM[®] Membrane For enhanced CO₂ + O₂ Recovery

- SO_x/NO_x removed in compression system
- NO is oxidised to NO₂ which oxidises SO₂ to SO₃
- The Lead Chamber Process
- FGD and DeNO_x systems
- Optimisation
- Elimination

 Low NOx burners are not required for oxyfuel combustion

 Hg will also be removed, reacting with the nitric acid that is formed Removal minimises compression and transportation costs.

 Optional O₂ removal for EOR-grade CO₂

 CO₂ capture rate of 90% with CO₂ purity >95%

 CO₂ capture rate depends on raw CO₂ purity which depends on air ingress Inerts vent stream is clean, at pressure and rich in CO₂ (~25%) and O₂ (~20%)

 Polymeric membrane unit – selective for CO₂ and O₂ – in vent stream will recycle CO₂ and O₂ rich permeate stream to the boiler.

 CO₂ capture rate increases to >97% and ASU size/power reduced by ~5%

Large Scale Pilot and Demo Projects Updated by S. Santos (01/12/10)

PROJECT	Location	MW th	Start Up Year	Boiler Type	Main Fuel	CO₂ Train
B & W	USA	30	2007	Pilot PC	Bit, Sub B., Lig.	
Jupiter	USA	20	2007	Industr. No FGR	NG, Coal	
Oxy-coal UK	UK	40	2009	Pilot PC	Bituminous	
Alstom (Windsor Facility)	USA	15	2009	Pilot PC (Tangential)	Bit., Sub B., PRB	
Vattenfall	Germany	30	2008	Pilot PC	Lignite (Bit.)	With CCS
Total, Lacq	France	30	2009	Industrial boiler	NG	With CCS
Callide	Australia	90	2010	30 MWe PC	Bituminous	With CCS
CIUDEN – PC	Spain	20	2010	Pilot PC	Anthra. Bit, Lig. Coke	With CCS
CIUDEN – CFB	Spain	30	2010	Pilot CFB	Anthra. Bit, Lig. Coke	With CCS
Vattenfall (Janschwalde)	Germany	~1000	2014?	~300 MWe PC	Lignite (Bit.)	With CCS
Endesa/CIUDEN	Spain	~1000	2015?	~300 MWe CFB?	?	With CCS
FutureGen2	USA	~600	2015?	~200 MWe PC	Bituminous Coal	With CCS
KOSEP/KEPRI Yongdong	Korea	~400	2018?	~100 MWe PC	?	?

PRE COMBUSTION CO₂ CAPTURE TECHNOLOGY FOR COAL FIRED POWER GENERATION

Pre-Combustion Capture

IGCC without Capture

- 5 coal-based IGCC demonstration plant in the USA, Netherlands, Spain and Japan
- IGCC is not at present the preferred technology for new coal-fired power plants
- Main commercial interest in IGCC is for use of petroleum residues
- Several plants built and planned at refineries
- IGCC has a small advantage over PC plant when CCS is added

Coal IGCC in Operation Worldwide

Projects _{Site}	Buggenum Netherland	Puertollano _{Spain}	Wabash River USA	Tampa USA	Nakoso _{Japan}
Gasifier type	O ₂ -blown Dry-feed Shell	O₂-blown Dry-feed Plenflo	O ₂ -blown Slurry-feed E-Gas™	O ₂ -blown Slurry-feed GE	Air-blown Dry-feed MHI
Coal consumption (metric t/d)	2,000 t/d	2,600 t/d	2,500 t/d	2,500 t/d	1,700 t/d
Gross output (GT)	284 MW 1,100°C- class	335 MW 1,300°C- class	297 MW 1,300°C- class	315 MW 1,300°C- class	250MW 1,200°C- class
Demonstration test start	Jan. 1994	Dec. 1997	Oct. 1995	Sep. 1996	Sep. 2007

•54

IGCC – Currently in Operation

Overview of Pre-Combustion Technology

- *Pre-combustion capture process is not a new concept*
 - Primarily based on production of synthetic gas, separating the CO2 and using the decarbonised syngas as fuel for the gas turbine
- One of the main elements is the gasification of the fuel feedstock to produce syngas
- Gasification technologies could produce a waste gas stream, which has high concentration of CO₂
 - This offers an opportunity to capture CO₂ at low cost
- It should be noted that CO₂ capture is not a process requirement, but could be easily implemented if warranted

Integrated Gasification Combine Cycle with CO2 Capture

Shift Reactor

CO₂ Capture via Physical Absorption

- Separation is primarily based on Henry's Law
- Due to high partial pressure of CO₂
 - The absorption capacity of organic or inorganic solvents for CO₂ increases with increasing pressure and decreasing temperature.
- Absorption of CO₂ occurs at high partial pressures of CO₂ and low temperatures. The solvents are then regenerated by either heating or pressure reduction.
- Most well known commercial processes/solvents
 - Selexol (dimethylether of polyethylene glycol)
 - Rectisol (cold methanol)

Pre-Combustion Capture: Key Barrier

Will reliability hinders the deployment of IGCC?

Record for IGCC's availability has been poor but improving.

Complexity of the plant could be a turn off to prospective investors or power generation company

Cost is another issue

Pre-Combustion Capture: Key Development Area

- Development in Gasifier Technology
 - Adaptation of the Gasifier for CO2 capture...
- Development in Air Separation Units
 - Membrane Technology???
- Development in Shift Reactor
 - Choice of Sour vs Sweet Shift Reaction
- Development in Separation of CO₂ using Physical Absorption technology

Uhde Prenflo Design Modification for CO2 capture application...

Development in Gas Turbine Technology: Horizontal Silo

Development in Gas Turbine Technology: Annular Combustor

65

SIEMENS

IGCC Gas Turbines Typical Gas Turbine Changes for IGCC Applications

Duke Energy Edwardsport IGCC Layout

67

Concluding Remarks

SUMMARY AND KEY MESSAGES

Concluding Remarks

- CCS will play an important role in reducing greenhouse gas emissions from the power generation sector.
- Several activities have been initiated worldwide in the development of Carbon Capture for Power Generation industry.
- There are two set of horse race among the three options for newly build and retrofit plant. There is no leader at the moment!
- We need large scale demonstration of the carbon capture technology to build the confidence necessary for a rapid deployment.
- We need to overcome the challenges that CCS should face toward its path to commercialisation.

Thank you

Email:stanley.santos@ieaghg.orgWebsite:http://www.ieaghg.org

