

Polish National Programme on safe CO2 geological storage

Adam Wójcicki, PGI-NRI

CO2 geological sequestration (CCS)

CO2 storage projects - Poland

- → 1995-..Borzęcin gas field (acidic gas - 60% CO2)
- → 2004-2008 Kaniów coal beds (RECOPOL& MoVeCBM)
- → Bełchatów demo CCS project (EEPR)
- Kędzierzyn demo CCS project planned
- → Regional studies

Estimations of CO2 storage capacity (PL)

Туре	Storage potential, Mt
CASTOR EU Cao Cangoity	3 752 3 522
EU GeoCapacity CO2 Atlas of Poland Cr1, J1, T formations (upper limits)	3 522 8 299 ~90 000
Hydrocarbon fields (31 structures)	764
Coal seams (selected CBM fields at depth of 1-2 km) Coal seams within Polish SCB at depth of 1-2 km	414 1 254
SUM SUM	5-9.5 Gt ~92 <i>Gt</i>

- Saline (Mezozoic) aquifers are of biggest potential and sufficient to store emissions of big plants,
- Hydrocarbon fields (mostly gas) are of small capacity,
- → Coal seams (methane recovery) are of local importance (SCB), the technology is not mature yet.

Perspective sedimentary basins

The Polish basin aquifers (z= 1km; Kotański, 1997)

- Lower
 Jurassic
- **→** Triassic
- Lower Cretace ous

Legal issues

- → The Directive on CO2 geological storage is being implemented in Poland;
- → The assumptions on relevant amendments of geological and mining law, environmental, economic law, etc., accepted by the Council of Ministers, after a long process of consultations with public and government agendas;
- → Now research CO2 injection up to 100 kt per well allowed;
- → CO2 storage of over 100 kt will be governed by the geological and mining law (same as, for example, hydrocarbon production) where Ministry of Environment is the authority;
- Storage fee of 1.25 €/t CO2 injected 60% goes to the commune/municipality where injection is located.

Qualification of CO2 storage potential

The Programme

"Assessment of formations and structures for safe CO2 geological storage including monitoring plans";

- → Ordered by Ministry of Environment (=the permitting authority of Directive on geological storage of CO2).
- → Conducted by 6 national institutions (PGI-NRI leader, AGH-UST, CMI, MEERI, O&GI, PBG).
- → Timeframe: 10.2008-09.2012; ~80 persons involved;
- → Goals:
 - → Supporting Polish demo projects,
 - Providing the permitting authority with information necessary for implementing CO2 storage,
 - Cooperation with other stakeholders, R&D organizations.

The scope of the programme (geology)

- It covers entire territory of Poland and the Baltic economic zone, but is focused on*:
- regional studies for 8 areas with saline aquifers,
- hydrocarbon fields and coal beds in general,
- case studies for saline aquifer structures (4),
- case studies for hydrocarbon fields (2) and coal beds (1).

reinterpretation of archive data, laboratory analyzes

The regional studies

The following geological formations are perspective for the regional study areas of saline aquifers:

- → I (central) Jurassic (J1, J2 sandstones);
- → II (S) Miocene;
- → III (central-NE) Jurassic (J1, J2 sandstones), T, Cr1;
- → IV (SE) Carpathian front foredeep (Cr to Cm);
- → V (E) Carboniferous (C3 sandstones), J, Cm;
- → VI (W) Permian (P1), T, J;
- → VII (NW) Jurassic (J1 sandstones), T3, T1 a small part offshore;
- VIII (N, incl. offshore area E part of Polish Baltic economic zone) Cm2, T.

The progress of the programme (~12-14 Gt)

Case studies in saline, aquifers, hydrocarbon fields and coalbeds.

- Central, S, SE and E parts of the country screened and assessed in depth,
- → W and NW area in progress,
- N area (incl. a large area offshore) left for 2012.
- Hydrocarbon fields and coal beds in general, assessed.

Site screening/selection criteria (based on CO2STORE guidelines)

- → Seal thickness: minimum 50 m, seal integrity is essential
- → Aquifer depth: from 800 m to 2500+ m
- → Aquifer net thickness: minimum 20-30 m (~a single layer)
- Porosity of the reservoir: minimum 10%, preferably 20%
- → Permeability of the reservoir: minimum 50-100 mD
- → Salinity: minimum 30 g/l, in case of relic, isolated fluids it might be lower
- → Capillary entry pressure is the caprock good enough, impermeable (if K<0.0005-0.005 mD it is likely safe)?
- Information necessary to evaluate the structure against criteria mentioned above

Works for area I - 1st Polish demo project (**Bełchatów**, 1.8 Mt/yr)

B-Z structure was selected (of sufficient data coverage, though not ideal) and two backup sites/areas were proposed to the investor (PGE).

Well correlation and aquifer mapping

J1 caprock and aquifer formations within the supercritical range

Well data analyzes (6 wells within B-Z structure)

2-D seismic for the site (17 old lines, 3 newer)

The site model and proposed surveys

(site characterization and baseline monitoring)

Injection simulations (AGH-UST) of J1 (0, 5, 20 y. of injection; 25 y. after; storage capacity 100-500 Mt)

CO2 na plume area ~14 x 14 km (max.)

Field works of PGE Belchatów

(the backup structures; not a part of the programme)

- → The backup sites were explored (2D seismic, 2 wells) and models are being constructed,
- → In NE there is nature protected area longer approval procedures,
- → In SW public opposition encountered (an NGO), a few lines relocated.

Pilot injection project

(another initiative; not a part of the programme)

An initiative of Ministry of Environment, funded by an association of Polish power plants.

- → Location in central Poland, not far from the demo site(s)
- → J1 (Jpl) aquifer as for demo site(s)
- → Duration 3 years
- → One injection well, one observation well (~1400 m)
- → Reservoir properties effective porosity likely 20%; permeability 200-500 mD; temperature 45 C; pressure ~12.5 MPa
- → Goal to evaluate injectivity of J1 aquifer
- → Amount of CO2 injected 27 kt within 2 years
- Project status contract ready for signing, land being purchased, geological study evaluated by experts of Ministry of Environment
- Project starts within several weeks

Pilot injection project profile and design of the wells

Pilot injection project

injection simulations (AGH-UST) - the CO2 plume range practically stabilizes after two year injection stops (~200 m radius)

Works for area II - 2nd Polish demo project (Kędzierzyn, 1.4 Mt/yr; PGI US & CMI)

- → Principal aquifer dębowieckie beds of Lower Miocene + basement (zamarskie beds, Upper Carboniferous),
- → Insufficient storage capacity 25 Mt after injection simulations (at least 35 Mt required),
- → Other options considered gas fields NW of Wrocław and saline aguifers in central Poland (200 km distance)

Hydrocarbon fields (Nosówka oil field in SE Poland; O&GI/INiG)

- → Reservoir C1 (Visean)
- → Caprock Lower Miocene
- → OOiP 4.5 mln t; OGiP 0.585 bln m3
- → UR of oil 0.9 mln t, gas 0.117 bln m3

Hydrocarbon fields (Wilków gas field in W Poland; AGH-UST)

- → Reservoir P1 (Rotliegend)
- → Caprock Zechstein
- → OGiP 5.5 bln m3; UR 4.4 bln m3
- → Storage capacity 14-20 Mt

Conclusions

- Ongoing research of the National Programme and previous projects provide the following conclusions:
- → CO2 storage capacity of Poland is sufficient (equals 50-70 years of emissions listed in ETS);
- → The most of storage potential is located onshore (>90%), offshore mostly in E Baltic area;
- → The best aquifers are of Mezozoic formations (especially J1, to lesser extent T3&T1; Cr3 is not always safe)
- Case study of B-Z structure (the 1st Polish CCS demo) provided promising results and such structures are a quite numerous J1 injectivity shall be proven by a field experiment
- → Miocene aquifers are not so good, as well as (likely) C1.
 - Hydrocarbon fields and coal beds are of limited storage capacity, same in case of EHR potential.

Thank you for your attention: www.pgi.gov.pl

