

The Porto Tolle CCS demonstration project

Pietro Barbucci

Enel - Engineering & Innovation Division

CO₂ Capture and Storage – Response to Climate change Regional Awareness-Raising Workshop

Vilnius, 13-14 April 2011

- The Porto Tolle CCS demonstration project: objectives and status
- The R&D activities supporting the development of Porto Tolle demo
- Italian policy framework
- Financial challenges in demostrating CCS

The Porto Tolle CCS demonstration project

Objectives and status

The Porto Tolle power plant conversion project

- Gross power output (MW)
- Net efficiency (LHV)
- Fuel
- Emissions SO2/NOx/Dust (mg/Nm3)
 - ✓ New main components:
 - USC boilers
 - Steam turbines
 - SCR denitrification system
 - FGD plants
 - Fabric filters
 - 2 domes for coal storage
 - ✓ Biomass co-firing capability

Old Plant 2640 39% Oil (0,25% S) 400/200/50

New Plant	
1980	
45%	
Coal	
80/80/7 (daily basis)	

Construction permit for the new plant issued Jan 5, 2011

urce: EUMETSA

ZEPT- Zero Emission Porto Tolle CCS demo plant lay-out

Porto Tolle power plant

ZEPT- Zero Emission Porto Tolle

Demo main features

Type of Project	Retrofit
Power generation	660 MWe
Primary fuel	Bituminous coal
Secondary fuel	Biomass
Power Generation Tech	USC-PC
% of flue gas treated	40%
CO ₂ Capture Tech	Post Combustion Ca with Amine
Stored CO ₂	Up to 1 Mt/y
CO ₂ Capture rate	90%
CO ₂ Storage solution	Deep saline aquifer
Storage location	North Adriatic Sea
CO ₂ value chain	Pure storage

European Energy Programme for Recovery

ZEPT- Zero Emission Porto Tolle

One of the six EEPR projects

ZEPT- Zero Emission Porto Tolle

WP Years 2009 2010 2011 2012 2013 2014 2015 R&D Supporting Activities Const. & Tests 1 CO2 Capture Pilot Plant Tech. spec., supply, install. CO2 storage & transport to injection site Cryogenic Storage Design and Construction Tests Pipeline test rig Comm Lic. qual. FEED's EPC contract 2 CO2 Capture Unit Techn. spec. + EPC contract Comm. 11 Basic design З Power Plant Integration **Basic design** FEED EPC contract 11 Comm. CO2 Transport 4 I Geological Site characterization site selection Comm CO2 Injection Storage & MMV 5 Geological site preparation Ш

Project time schedule

Activities carried out in the frame of the EEPR Grant Agreement signed in December 2009 with European Commission

ZEPT – CCS Demo Activities

Activities in progress:

- Selection of the CO₂ capture technology : execution of 4 parallel FEED's under way (completion Apr. 2011; selection Jun. 2011)
- Development of the FEED for transport pipeline and injection infrastructure (contract award Jun. 2011)
- Selection and assessment of the storage site : geological site modelling and appraisal well design in progress
- Development of the financial plan

R&D activities supporting the development

of Porto Tolle demo

11

ZEPT- R&D Supporting Activities

CO₂ capture pilot plant

- At the site of **Brindisi** coal fired power station a pilot plant for CO₂ separation via amine scrubbing was built and is now in operation. The pilot plant is installed on the Unit 4.
- The pilot plant is composed by a flue gas pretreatment section (able to remove completely the particulate and the SO₃ and to reduce SO₂ level below 20 mg/Nm³) and by a CO₂ separation unit
- The plant size is 10.000 Nm³/h of flue gas, capturing up to 2,5 t/h of CO₂
- Goal: to gain experience in CCU designing and operation, and to assess the environmental impact of the process

ZEPT- CO₂ capture pilot plant

 ✓ About one year for site construction activities

Less than 2 years to first
 CO2 separation since detailed
 engineering start

✓Operation start: Oct 2010

ZEPT- CO₂ capture pilot plant

CO₂ separation unit

Absorber

- 1.5 m internal diameter
- 3 structered packing sections (22 m total)
- Solvent flow rate : 20 to 80 m³/h

Pilot plant general flow diagram

Stripper

- 1.2 m internal diameter
- 3 random packing sections

(10 m total)

- Operative pressure up to 2.5

bar

Stack

ZEPT- CO2 capture pilot plant

Research Program Objectives

- Develop operational experience (MEA 20%- 30%-40% + inhibitors)
 - Assessment of the MEA absorption technology: reliability, environmental impact, power consumption and capture performance
 - > Definition of operating procedures, management
 - Cost evaluation at different operating conditions for retrofit application: solvent consumption, inhibitors, waste treatment management
 - Flue gas composition: CO2 stream and emissions

Test advanced solvents and inhibitors

- Reduction of power consumption (reduction of operating cost)
- Solvent degradation (reduction of operating cost)
- Assessment of corrosion (reduction of capital cost)
- Reaction rate (check of design parameters)
- Environmental performances

ZEPT- CO2 capture pilot plant

Tests schedule

	Jai	nuary	y	Fe	brau	ry		March			April		May		June		July	Au	igust	Septemb	September			November	December
	1 2	3	4	5	67	8	9 :	LO 11	12 13	14 1	5 16 17	18 19	20 21	22 23	24 25	26 27	28 29 3	30 31 32	2 33 34	4 35 36 37	38 39	40 41 42	2 43	44 45 46 47 48	8 49 50 51 52
2010	Construction							on					Start-up					Pe	erform	ance tests -	MEA	20% MEA 30%			
	Jai	nuary	y	Fe	brau	ry	March				April		May		June		July A		igust	Septemb	er	October		November	December
	1 2	3	4	5	67	8	9 :	l 0 11	12 13	14 1	5 16 17	18 19	20 21	22 23	24 25	26 27	28 29 3	30 31 32	2 33 34	4 35 36 37	38 39	40 41 42	2 43	44 45 46 47 48	8 49 50 51 52
2011	MEA 30%						MEA	40%			-	Amine	mine Mixture 1							Amine Mixtu		re 2			
	Jai	nuary	y	Fe	brau	ry		Marc	n		April		May		June		July	Au	igust	Septemb	er	October		November	December
	1 2	3	4	5	67	8	9 :	l 0 11	12 13	14 1	5 16 17	18 19	20 21	22 23	24 25	26 27	28 29 3	30 31 32	2 33 34	4 35 36 37	38 39	40 41 42	2 43	44 45 46 47 48	8 49 50 51 52
2012 A	Advance solvent 1 Ferr									ermata	Gr. 4.	Revam	ping Fil	ltro						Advand	ce so	olvent 2			

- 2011 \rightarrow 4000 hr continuos operation; ~ 8000 ton of separated CO₂
- 2012 → 3000 hr continuos operation; ~ 6000 ton of separated CO₂ Tests with advanced solvents

ZEPT- CO₂ capture pilot plant

Test campaign with 30% MEA

The following settings have been applied in the 500 hours test (Jan 07 – Feb 11; continous operation):

- □ Flue gas flow: 10.000 Nmc/h
- Solvent flow: 30 mc/h
- □ Stripper pressure: 0.8 barg
- Corrosion coupons are installed:CS 018; SS 316; SS 304

Steam consumption: $\sim 3.4 \text{ GJ/t CO}_2$

Average \dot{CO}_2 capture: ~ 90 %

ZEPT - CO2 capture pilot plant

ZEPT – R&D Supporting Activities Integrated CCS pilot project

- The first Italian integrated CCS pilot project is under development in the frame of the Eni - Enel cooperation agreement signed in 2008. It will include:
 - Capture Enel's post-combustion capture pilot plant in Brindisi in operation from Oct. 2010 and separating at least 5000 tCO₂/y
 - Liquefaction CO₂ liquefaction and criogenic storage system to be built in Brindisi treating the CO₂ produced by the pilot capture plant
 - Transport by truck
 - Storage Eni's pilot CO₂ injection project in an exhausted gas field in Cortemaggiore (Piacenza). Injection start: summer 2012. Total CO₂ injected: 24000 ton
- It is also foreseen to build in Brindisi a closed loop
 CO₂ pilot pipeline to develop knowledge to be used in the demo transport system design.

ZEPT – **R&D** supporting activities CO₂ pilot pipeline

This will allow to collect experimental data to be used to:

- Validate design models (both stationary and dynamic) of the CO₂ transport line
- Optimize operating procedures
- Study corrosion problems related to the presence of impurities in the CO₂ stream

Pilot pipeline loop

FEED completed in Feb. 2011. Permitting under way, order to be issued 2H 2011. Expected operation start in 2012

Italian policy framework

The Italian energy strategy The role of CCS

- Coal is a key element of the Italian energy sources diversification policy. The strategy for new coal is based on the use of BAT's while promoting the transition to near-zero emissions (advanced materials, ultra-high efficiency systems, CCS).
- The transposition of the European directive on CO₂ geological storage in the Italian legislation will be realised through a base decree followed by various administrative acts (see next slide).
- Law 99/2009 (New energy strategy) includes provisions for the promotion of innovation in the energy sector. Priority fields for R&D&D are CCS, nuclear and distributed generation. Financial support to the realisation of CCS demo projects is also foreseen (source of funds not specified).
- **Law 111/2010** provides for the use of revenues of the auctioning of ETS allowances for the aims quoted in art 10.3 of the European directive 2009/29/EC, which include "the environmentally safe capture and geological storage of CO₂..."

Italian regulatory framework

The trasposition of the European directive 2009/31/EC on CO2 geological storage into the Italian legislation is in progress:

- The tool used is a Legislative decree. This is an act from the Government which was empowered by a vote of the Parliament (Law 96/2010, the so-called "Legge comunitaria 2009").
- Process status
 May 2010 First draft of the decree
 Jun Oct 2010 Stakeholders consultation
 Nov 2010 Feb 2011 Legal review
 23 Mar 2011 Approval by Council of Ministers
 By mid- May 2011 Opinion from Parliament Commissions
 End May 2011 (expec.) Final approval and publication
- According to the draft text the competent authority in the permitting process is the Ministry of the Economic Development in concert with the Ministry of the Environment.
- Details about the implementation of some articles will be contained in ministerial decrees to be issued within 6 months from the publication of the legislative decree.

Financial challenges

in demonstrating CCS

Financial feasibility of CCS demos

The economic gap for a typical CCS demo project is of the order of 1b ${\ensuremath{\in}}$

Public funding assumptions for ZEPT demo

• A grant from the EEPR fund → 100 M€ under the Grant

100 M€ under the Grant Agreement signed in Dec. 2009

 A substantial contribution from NER 300 fund → Call for proposal issued Nov. 2010; process ongoing

• A significant funding from Italian Government — Under discussion

ZEPT- Decision gates

