

UNIVERSITY oF TARTU

THE CO₂-BINDING BY Ca-Mg-SILICATES IN **DIRECT AQUEOUS CARBONATION OF** OIL SHALE ASH AND STEEL SLAG Mai Uibu*, Rein Kuusik, Lale Andreas, Kalle Kirsimäe

SUMMARY

The aim of the study

This study was focused on direct aqueous carbonation of waste materials in which Ca and Mg are partially or generally bound as silicates. The experiments were carried out at mild conditions (atmospheric pressure and room temperature).

Conclusions

 \sim Quantitative XRD analysis indicated that Ca₂SiO₄ and Ca₃Mg(SiO₄)₂ were the main CO₂ binding low water-solubility components of PFA as well as steel slags.

> The main carbonation product was calcite ($CaCO_3$), indicating that Mg-compounds were not in most cases reactive towards CO₂ at these mild conditions.

The CO₂ uptake for PFA was 29 CO₂ g/100 g PFA (56% bound by lime and 33% bound by Ca-

EXPERIMENTAL DEVICE

Materials used:

>pulverized firing oil shale ash (**PFA** from Narva Power Plants, Estonia) >electric arc furnace slag (EAFS, types 1 and 2 from Uddeholm Tooling, Sweden) >ladle slag (LS from Uddeholm Tooling, Sweden)

Experiment conditions: room temperature, atmospheric pressure, S/L=0.1

Carbonation treatment

Pretreatment:

silicates).

The CO₂ uptakes for steel slags were 8.7g CO₂/100 g EAFS1, 1.9 g CO₂/100 g EAFS2 and 4.6 g/100g LS.

>CO₂-binding ability of different wastes depends significantly on the origin of the material as well as on the pretreatment conditions.

>Based on multifaceted studies about carbonation of oil shale ash, a new method for eliminating CO₂ from flue gases by Ca-containing waste material was proposed.

Characterization of solid samples: q-XRD; chemical analysis; SEM; BET

RESULTS and DISCUSSION

Characterization of the initial ash (PFA)

Chemical composition %			40		/ ↓	Si, F	Stand Marine Stand
CaO ^t	51.19					AI)(
MgO ^t	4.93		≈ 30)2	CaO	Mg, iO ₄)	
Phase composition %				CO		a) ₂ (] 1g(S	
Calcite CaCO ₃	9.55			Mg(OH)	Q	a, Na Ca ₃ N ISiO	PFA
Dolomite CaMg(CO ₃) ₂	3.34 12.9%			K ₂ Ca(X		SSA=1.8 m ² /g
Portlandite Ca(OH) ₂	1.42		0 +				
Lime CaO	22.4 23.8%			PFA		■ cPFA	
Periclase MgO	4.27]	Distribution of Ca	a-Mg-compo	ounds in the in	nitial (PFA) and	A new method for elimi
α - <i>Ca</i> ₂ SiO ₄	1.99	treated materials (cPFA) according to qXRD.					containing waste mater
$\beta - Ca_2 SiO_4$	<u>Free CaO</u>			The process includes contacting			
Melilite(Ca,Na)₂(Mg,Al)(Si,Al)₃O₇	4.99				16.15 g CO	₂ /100 g PFA	material with CO ₂ -containing f
<i>Merwinite Ca₃Mg(SiO₄)₂</i>	6.81	Tota	l amount of CC		<i>CaO</i> , <i>Ca</i> (<i>O</i> ,	$H)_2$	First step: keeping the pH levels
Wollastonite CaSiO ₃ 2M	3.88 <u>3</u> 4.6%	boun	d hv PFA	2	~56% of the	e total CO ₂ bound	In the range of 10–12.
Anhydrite CaSO ₄	4.48	29 g	CO ₂ /100 g PFA	.	Ca-silicates	<u>}:</u>	such as <i>free lime</i> are carbonate
Gypsum CaSO ₄ *2H ₂ O	0.76 5.3%		2 3	,	• 9.61 g CO ₂	/100g PFA	in the <i>first step</i> .
Hematite Fe ₂ O ₃	1.19	Theo	retical CO ₂		Predominar	tly <i>Ca₂SiO₄</i>	Second step: keeping the pH leve
Quartz, SiO ₂	7.38	bindi	ing ability :		~33% of th	e total CO ₂ bound	in the range of 7–8.
Orthoclase KAlSi ₃ O ₈	3.51	35 g (CO ₂ /100g PFA				The components of low water-s
Σ	93				Other (Mg	, K compounds):	Ca is generally contained in th
					3.1 g of CC	D ₂ /100g PFA	are carbonated in the second ste
					~11% of th	e total CO ₂ bound	Conditions: atmospheric pressur

Direct aqueous carbonation of oil shale ash PFA

SEM images of initial and carbonated PFA

inating CO₂ from flue gases by Ca-

ial

the aqueous suspensions of Ca-containing waste lue gas in two steps: Ash Aqueous phase Step pH=10-12 Flue gas Treated Step 2 pH=7-8 olubility, in which Aqueous Separator nhase e form of silicates, Neutralized sure, room temperature ash

Characterization of the initial slags

Chemical comp. %	EAFS1	EAFS2	LS
CaO ^t	36.12	26.91	42.22
MgO ^t	18.95	18.95	14.99
Phase composition %		_	
CaCO ₃	2.5	2.3	1.9
MgO	3.8	tr	11.3
$Mg(OH)_2$	0.9	2.2	tr
α - <i>Ca</i> ₂ SiO ₄			18.3
β -Ca ₂ SiO ₄			14.8
$Ca_3Mg(SiO_4)_2$	19.8	1.4	1.5
CaSiO ₃ 2M	1.4	2.3	1.5
CaMgSiO ₄	32.9		
$Ca_4Si_2O_7(F,OH)_2$	15.8	14.8	
$Ca_2MgSi_2O_7$	4.0	3.3	10.1
$Ca_{12}Al_{14}O_{33}$			20.2
$Ca_{7}Mg(SiO_{4})_{4}$			3.5
$Ca_{3}Al_{2}(SiO_{4})_{3}$			6.1
$(Mg,Fe)_2Si_2O_6$	5.4	42.0	1.8
Mg ₂ SiO ₄		10.6	
MgAl ₂ O ₄	9.7	13.6	6.4
SiO ₂	0.7	1.4	tr
KAlSi ₃ O ₈	1.5	2.2	1.0
\sum	98.4	96.1	98.5

Direct aqueous carbonation of steel slag

SEM images of initial and carbonated EAFS1

SEM images of initial and carbonated LS

	LAISI	LAISZ		ΓΓΑ
g/100g	8.7	1.9	4.6	29
g/100g	48	41	48	35
%	18	5	10	83
	g/100g g/100g %	g/100g 8.7 g/100g 48 % 18	EATST EATS2 g/100g 8.7 1.9 g/100g 48 41 % 18 5	EATS1EATS2LSg/100g8.71.94.6g/100g484148%18510

Authors express their gratitude to Dr. V. Mikli for SEM analysis. The research was supported by the Estonian Ministry of Education and Research (SF0140082s08) and the Estonian Science Foundation (Grant No 7379).